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Abstract  After the tragedy of September 11, 2001, there is widespread concern in 
the international society that a terrorism organisation capable of the suicide 
hijackings of airliners could readily adapt these capabilities to major shipping targets.  
Techniques require to be developed to bridge maritime security gaps, which are 
defined as the potential areas associated with how to assess the security levels of a 
vulnerable maritime target and how to use the assessment to make appropriate 
decisions and controls.  Some safety experts have focused their mind and attempted 
to use traditional risk assessment and decision making approaches to deal with 
possible terrorism threats in a maritime security area, investigate the key 
vulnerabilities and provide effective security control and management options.  Two 
of the major challenges are to analyse security in situations of a high level 
uncertainty and to construct all information available with difference in nature in a 
utility form suitable as input to a risk inference mechanism.  To solve such 
difficulties, this paper proposes a subjective security-based assessment and 
management framework using the combination of two fuzzy evidential reasoning (ER) 
approaches. 
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0  Introduction 

The recently implemented International Shipboard and Port Facility Security (ISPS) Code [1] 
requires security assessment for various ship and port facility security plans. However, apart from 
its Section 8 in parts A and B, the Code does not prescribe a generally accepted methodology to 
carry out such assessment. Although Section 8 in Part B provides a number of issues to be 
considered when a security assessment is carried out, an obvious problem involved is that Part B 
is not mandatory and this may leave maritime stakeholders to choose and define their “suitable” 
methodologies and guidelines for individual maritime security assessments. For example, the 
American Bureau of Shipping (ABS) or Lloyd’s Register favours the risk assessment guidelines 
provided by the United States Coast Guard (USCG), while Det Norske Veritas (DNV) and 
Germanischer Lloyd (GL) have developed guidelines based on checklists which have a close 
relationship to the ISPS Code. The USCG guidelines do not include any statements about 
likelihood of security threats, whereas the DNV-GL approach allows for a consideration of likely 
threats only[2]. The USCG approach requires the development of mitigation strategies and clear 
identification of the best option(s) from costly risk control measures and on the other hand, the 
users of the DNV-GL approach have to update their security assessments frequently depending on 
the latest security information available. As far as the threat of terrorism is concerned, the lack of 
critical mass in statistical data and the complexity of selecting the best SCO (optimisation) based 
on multiple security control attributes will prove the tasks of adapting traditional approaches to be 
challenging and generating novel and uniformed methodologies to be urgent. 



One realistic way to analyse security with unavailable or incomplete objective data is to employ 
subjective assessment based on fuzzy IF-THEN rules in fuzzy set theory (FST). The approach 
based on the fuzzy rules, where conditional parts and/or conclusions contain linguistic variables [3] 
can model the qualitative aspects of human knowledge and reasoning process without employing 
precise quantitative analysis. It does not require an expert to provide a precise point at which a risk 
factor exists. This actually provides a tool for working directly with the linguistic information, 
which is commonly used in representing risk factors and carrying out safety assessment [4-7]. The 
purpose of analysing security is to identify the high-level risks in a prioritised list so as to ensure 
the correct decisions to be made and appropriate SCO(s) to be selected. However, realising such 
an objective requires other factors from economical, technical and environmental considerations to 
be satisfied. The factors can be defined as multiple decision attributes in analysing a complex 
maritime security management problem and normally investigated by the rules of a knowledge 
base in a hierarchical structure, in which the sub-criteria of the attributes can be further developed. 
In general, a bottom-up approach can be used to solve such a problem. Pieces of evidence from 
the lowest-level criteria are aggregated as evidence for the second lowest-level criteria/ attributes, 
which is in turn aggregated to produce evidence for higher-level attributes. The ER approach has 
presented the superiority in dealing with the synthesis of various pieces of evidence 
obtained/evaluated. Therefore, this study proposes a subjective security-based assessment and 
management framework using the combination of two fuzzy ER approaches. In the following, 
Section 2 outlines the security analysis and synthesis framework using a FRB-ER approach. The 
framework of synthesising security estimation and other multiple decision attributes is provided in 
Section 3 where the synthesis result can be used to produce the preference estimates associated 
with SCOs for ranking purposes. An illustrative example is used to demonstrate the application of 
the proposed framework in Section 4. Section 5 concludes this paper. 

1  Fuzzy rule-based security analysis framework 

The proposed framework for modelling security assessment consists of five major components, 
which outline all the necessary steps required for maritime security analysis. 

1.1  Identify risk parameters and define fuzzy input and output variables 

The threat-based risk parameters used to define subjective security estimates include those at both 
the senior and junior levels. The senior parameter is “Security estimate (SE)”, the single fuzzy 
output variable, which can be defuzzified to prioritise the risks. The variable is described 
linguistically and is determined by some junior parameters. In risk assessment, it is common to 
express a security level by degrees to which it belongs to such linguistic variables as “Poor”, 
“Fair”, “Average” and “Good” that are referred to as security expressions. To analyse the junior 
parameters, four fundamental risk parameters can be identified and defined as “Will” (W), 
“Damage capability” (D), “Recall difficulty” (R) and “Damage probability” (P). W decides the 
failure likelihood of a threat-based risk, which directly represents the lengths one goes to in taking 
a certain action. To estimate W, one may choose to use such linguistic terms as “Very weak”, 
“Weak”, “Average”, “Strong” and “Very strong”. The combination of D and R responds to the 
consequence severity of the threat-based risk. Specifically speaking, D indicates the destructive 
force/execution of a certain action and R hints the resilience of the system after a failure or 



disaster. The following linguistic terms can be considered as a reference to be used in subjectively 
describing the two sister parameters: “Negligible”, “Moderate”, “Critical” and “Catastrophic” for 
D and “Easy”, “Average”, “Difficult” and “Extremely Difficult” for R. P means failure 
consequence probability and can be defined as the probability that damage consequences happen 
given the occurrence of the event. One may choose to use such linguistic terms as “Unlikely”, 
“Average”, “Likely” and “Definite” to describe it. 

Fuzzy logic, based on FST, accommodates such linguistic terms through the concept of partial 
membership. In FST, everything is a matter of degree. Therefore, any existing element or situation 
in security assessment could be analysed and assigned a value (a degree) indicating how much it 
belongs to a member of the five sets of the risk parameters. Furthermore, five membership 
functions can be defined as five curves to describe how each point in the input and output space is 
mapped to a membership value (or degree of membership) between 0 and 1. Due to the advantage 
of simplicity, straight-line membership functions, especially triangular and trapezoidal 
membership functions have been commonly used to describe risks in safety assessment[8]. 
Consequently, the fuzzy membership functions in security assessment, consisting of five 
overlapping triangular or trapezoidal curves, are generated using the linguistic categories 
identified in knowledge acquisition and the fuzzy Delphi method[9]. They are provided in the work 
by Yang [10]. 

1.2  Construct a fuzzy rule base with a belief structure 

Fuzzy logic systems are knowledge-based or rule-based systems constructed from human 
knowledge in the form of fuzzy IF-THEN rules [11]. An important contribution of the fuzzy system 
theory is that it provides a systematic procedure for transforming a knowledge base into a 
non-linear mapping [12]. A fuzzy IF-THEN rule is an IF-THEN statement in which some words are 
characterised by continuous membership functions. For example, the following is a fuzzy 
IF-THEN rule: IF W of a threat is “Very strong” AND D is “Catastrophic” AND R is “Extremely 
difficult” AND P is “Definite”, THEN SE is “Poor”. The descriptions of W, D, R, P and SE are 
characterised by the membership functions. A fuzzy system is constructed from a collection of 
fuzzy IF-THEN rules from human experts or based on the domain knowledge and is then 
completed by combining these rules into a single system. 

Obviously, the IF-THEN rules in this study can have two parts: an antecedent that responds to the 
fuzzy input and a consequence, which is the result/fuzzy output. In classical fuzzy rule-based 
systems, such input and output are usually expressed by single linguistic variables with 100% 
certainty and the rules constructed are also always considered as single output cases. However, 
when observing realistic maritime security situations, the knowledge representation power of the 
fuzzy rule systems will be severely limited if only single linguistic variables are used to represent 
uncertain knowledge. Four fuzzy input parameters include 17 (=5+4+4+4) linguistic variables, 
which can be assembled to produce 320 (=5×4×4×4) antecedents. Given a combination of input 
variables, SE may belong to more than one security expression with appropriate belief degrees. 
For example, a fuzzy rule with certain degrees of belief can be described as: IF W of a threat is 
“Very strong” AND D is “Catastrophic” AND R is “Extremely difficult” AND P is “Likely”, 
THEN SE is “Poor” with a belief degree of 0.9, “Fair” with a belief degree of 0.1, “Average” 
with a belief degree of 0, “Good” with a belief degree of 0 and “Excellent” with a belief degree 



of 0. 

In order to model general and complex uncertain problems in security assessment, the classical 
fuzzy rule-based systems are extended to assign each rule a degree of belief. Assume that the four 
antecedent parameters, U1=W, U2=D, U3=R and U4=P can be described by linguistic variable 

iiJ
A , where i=1, 2, 3, or 4 respectively and J1 = 1, …, or 5, J2, J3 and J4 = 1, …, or 4. One 

consequent variable SE can be described by 5 linguistic terms, D1, D2, D3, D4 and D5. Let k

iiJ
A  

be a linguistic term corresponding to the ith parameter in the kth rule, with i=1, 2, 3 and 4. Thus, the 
generic kth rule in the rule base can be defined as follows: 

Rk: IF W is k

J
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and D is k

J
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 and R is k

J
A

33
 and P is k

J
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44
, then SE is D1 with a belief 

degree of β1k, D2 with a belief degree of β2k, D3 with a belief degree of β3k, D4 with a belief degree 
of β4k and D5 with a belief degree of β5k . 
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! , k!{1, …, 320}. It is noted that all the parameters and the belief degrees of the 

rules are usually assigned at the knowledge acquisition phrase by multiple experts on the basis of 
subjective judgements. An entire rule base including 320 rules with a belief degree structure is 
provided in [10]. 

1.3  Application of a frb-er approach 

Once a rule-based system is established, it can be used to perform inference for given fuzzy or 
incomplete observations to obtain the corresponding fuzzy output, which can be used to assess the 
security level of a vulnerable maritime target. The inference procedure is basically composed of 
three steps, summarized as follows. 

1.3.1  Observation transformation 

Before starting the inference process, observations available should be analysed to determine their 
relationship with each junior risk parameter in the antecedent in a numerical form. Four kinds of 
possible observations may be represented using membership functions to suit conditions under this 
study. They are either a single deterministic value with 100% certainty, a closed interval, a 
triangular distribution or a trapezoidal distribution [11]. Having defined the four junior risk 
parameters above, a matching function method [7] can be employed to perform the observation 
transformation and determine the belief degrees to which actual observations, which have been 
numerically described, match to each linguistic variable in the antecedent. 

The matching function method chooses the Max-Min operation to show the similarity between the 

real input fuzzy set Ar
 and the corresponding fuzzy linguistic variables 

iiJ
A , because it is a 

classical tool to set the matching degree between fuzzy sets [3]. Therefore, the matching degree 

between Ar
 and

iiJ
A can be defined as follows: 



iiJ
a = M(Ar, 

iiJ
A ) =max[min( ( ), ( ))]

r
iJi
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x xµ µ         (1) 

where x covers the domain of the input Ar. Each 
iiJ

a  represents the extent to which Ar belongs to 

the defined linguistic variables in the ith risk parameter in the antecedents. It is noteworthy that the 
fuzzy input may also be directly judged and expressed by experts using linguistic variables 
without the requirements of observation transformation. 

1.3.2  Activation of rule weights 

The aim of the observation transformation to the risk parameters is to obtain the corresponding 
security levels for further evaluating the priority of risks. Thus, the introduction of the risk 
parameters with some similarity degrees transformed from the realistic observations into the 
rule-based inference system constructed above is necessary. An activating rule weight method is 
used to implement such an introduction. In other words, the distributions of different weights to all 
rules can be used to describe the relationship between the risk input transformed from 
observations and the rules in the system. In order to obtain an appropriate weight for the kth rule, 
the similarity degrees related to the kth rule are required to be synthesised in a logical way that can 
reflect the AND connective between their representing risk parameters. Liu et al. [7] have 
recommended using the Product operator as the logical tool to synthesise the degrees and deal 
with the dependencies of the parameters W, D, R and P. Consequently, since the four junior risk 
parameters have the same importance, the weight of the kth rule can be calculated as follows: 

θk = 
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(i = 1, 2, 3 or 4; J1 = 1, …, or 5; J2, J3 and J4 = 1, …, or 4) (2) 

Note that the situations where some of m

iiJ
!  are equal to zero will geminately simplify the 

calculation through the ignorance of the rules including those linguistic variables with a zero 
similarity degree. 

1.3.3  Rule inference for the calculation of security levels using the er approach 

Use of the rule weight method can successfully distribute different weights to all related rules and 
thus, enables the establishment of a new rule-based system, which can be summarized using the 
following rule expression matrix shown in Table 1. 

Table 1  A new rule expression matri x for the introduction of observations 

                       Consequence 

               Belief 

Antecedent 

Poor Fair Average Good 

A1
1J1 A1

2J2 A1
3J3 A1

4J4 θ1 β11 β21 β31 β41 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Ak
1J1 Ak

2J2 Ak
3J3 Ak

4J4 θk β1k β2k β3k β4k 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 



An
1J1 An

2J2 An
3J3 An

4J4 θn β1n β2n β3n β4n 

In the matrix, n represents the number of all rules whose weights are not zero. 

Having represented each rule using the rule expression matrix, the ER approach [13-14] can be used 
to combine the rules and generate a final conclusion, which is a belief distribution on the security 
expressions as well as giving a panoramic view about the security level for a given observation. 

1.4  Security synthesis in a hierarchy 

The discussion above focuses on the security assessment of basic events at the bottom level of a 
hierarchical structure done by an expert. The security levels of a system on a higher level are often 
determined by all the associated vulnerable events of their individual components, which make up 
the structure. Therefore, this part is concerned with the security synthesis of a system at various 
levels such as: 

 The synthesis of security estimates of a specific vulnerable event for a component done by a 
panel of experts; or 

 The synthesis of security estimates of various vulnerable events to a component, furthermore, 
to the security associated with each sub-system, and finally the security associated with the 
system being investigated. 

Consequently, the multi-expert and multi-level security synthesis can be carried out to obtain the 
security evaluation of the system using the ER approach introduced previously. 

1.5  Ranking security estimates 

In order to rank the security estimates expressed by fuzzy sets, the fuzzy linguistic variables 
require to be defuzzified by giving each of them an “appropriate” utility value (Uv). Many 
defuzzification algorithms have been developed, of which Chen and Klien [15] may be well suited 
to modelling the fuzzy security expressions. 

Consequently, the four security linguistic expressions of the senior risk parameter can be 
deffuzzified as the set of [0, 0.3125, 0.5926, 1]. The index value (Nv) for ranking the security 
estimates can be calculated as follows: 

Nv = β1 × 0 + β2 × 0.3125 + β3 × 0.5926 + β4 × 1      (3) 

where βi (i = 1, 2, 3, 4) is a belief degree measuring the subjective uncertainty that “ SE belongs to 
each of the four security expressions”. 

2  Fuzzy link-based security management framework 

The study of this section is to synthesise the security estimates acquired above with other 
associated decision attributes (i.e. cost and time) and obtain the overall performance scores for each 
SCO. The analysis of a complex security-based decision making problem can be carried out using 
a hierarchical structure, where the top decision making issue is often determined by multiple 
attributes. Each attribute usually has several parameters and the parameters may be further 
decomposed into more detailed sub-parameters. Such a top-down hierarchy can be kept under 



analysis until the lowest level factors can be effectively assessed by domain experts using their 
subjective knowledge based on objective information. The generic model of the hierarchy is 
shown in Fig. 1. 

 

Fig. 1  A generic model of security-based decision making hierarchy 

Once the hierarchy is constructed, the next step is to synthesise all evaluations from the experts to 
obtain the overall performance score of the top level event based on a bottom-up analysis. Let the 
estimation of the lowest-level factors based on all expert judgements to be fuzzy input and the 
overall performance scores to be fuzzy output. Then, the calculation of the fuzzy input can be 
obtained by combining the expert judgements using the ER approach. The transformation from 
fuzzy input to fuzzy output is usually complex and requires careful analysis of appropriate 
synthesising approaches. 

In the work by Wang et al. [5], a traditional safety-cost based decision making method has been 
developed using the ER approach to provide a possible basis for the synthesis. However the 
applications of such a conventional method requires many assumptions such as the same amount 
of decision attribute linguistic variables and the unilateral-order relationship between the linguistic 
variables. 

Having given the security analysis framework above, the FRB-ER method can be repeatedly used 
for the transformation from fuzzy input to fuzzy output in decision making. It requires establishing 
multiple fuzzy rule bases by following the top-down hierarchy, which can be produced by 
investigating individual family branches including a parent variable and its attached children. In 
the fuzzy rule bases, the linguistic variables used to express children constitute the antecedent part 
and the ones used to describe parent make up the consequence. An obvious weakness of this 
method is that both construction and calculation associated with multiple fuzzy rule bases are 
cost-ineffective and time consuming. 

A fuzzy link-based method is developed for security-based multiple attribute decision-making 
analysis. The ER approach has proven to be an effective tool to deal with multidisciplinary 



information and data. However, the application of the approach requires the assumption that all 
information and data is assessed or obtained on the basis of the same universe (one common utility 
space), which is often not the case in security management. Therefore, the information and data 
need to be transformed before being aggregated using either the rules based on fuzzy logic theory 
(which is related to the FRB-ER method) or the belief distributions based on the utility theory 
(which is associated with the FLB-ER) by decision makers. By taking the attribute “cost” in one 
multiple attribute decision making (MADM) analysis as an example, the FLB-ER approach can be 
introduced in the following context. 

Assume the attribute “Cost” has its parent event “SCO” and children parameters “Investment” and 
“Maintenance” in a decision-making hierarchy. The top level event “SCO” can be expressed using 
such linguistic variables as “Slightly preferred”, “Moderately preferred”, “Average”, “Preferred” 
and “Greatly preferred”. The attribute “Cost” is described linguistically as “Very High”, “High”, 
“Average”, “Low” and “Very Low”. The linguistic variables used to assess the parameters 
“Investment” and “Maintenance” are individually the sets of (“Substantive”, “Large”, “Moderate”, 
“Little”) and (“Excessive”, “Reasonable”, “Marginal”, “Negligible”). Then, a belief structure 
linked between the linguistic variables expressing different three-level attributes can be generated 
for the transformation from fuzzy input to output and shown in Fig. 2. 

In Fig. 2, w represents the relative (normalised) weights of each attribute/parameters (same-level 

factors) under the same parent. The values attached to the arrows are the belief degrees !  

distributed by experts for indicating the relationships between linguistic variables of 
different-level decision factors. Note that the sum of the belief values from one linguistic variable 
is equal to one. For example, the parameter “Investment” with “Large” expression indicates that 
the level of the attribute “Cost” can be believed as 0.8 (βi=2

c=2) “High” and 0.2 (βi=2
c=3) “Average” 

without the presence of other evidence. As far as selecting the best “SCO” is concerned, the 
“High” cost evaluation can support “SCO” to 1 (βc=2

r=2) “Moderately preferred” and the “Average” 
cost evaluation can be transformed into 1 (βc=3

r=3) “Average” on the universe expressing “SCO”. 
Such a linked belief structure can be used as a channel to transform the fuzzy input to fuzzy output 
by aggregating all values of fuzzy input, factor weights and belief degrees. The detailed transform 
process and aggregating calculations can be described in [10]. 

 

Fig. 2  An example of transforming fuzzy input to output 



Suppose there are p SCOs, which are studied using s lowest-level factors and assessed by t experts. 
For the jth SCO (j = 1, 2, …, p), the fuzzy input of the lth factor (l = 1, 2,…, s) can be obtained by 
combining its t assessments from all experts on the basis of the ER approach. Using an Analytic 
Hierarchy Process (AHP) method [16], the weight of the lth factor can also be calculated. 
Furthermore, using the fuzzy link-based approach, all fuzzy input can be transformed into their 

corresponding fuzzy output Osjl with the individual weights wsjl based on the same space, the 

utility expressions of SCOs. Then, all Osjl can be further synthesised using the ER approach to 

obtain a preference estimate associated with the jth SCO in terms of the utility expressions. The 
synthesised preference estimate Uj for the jth SCO can be expressed as follows: 

Uj = {uj
1, “Slightly preferred”, uj

2, “Moderately preferred”, uj
3, “Average”, uj

4, “Preferred”, uj
5, 

“Greatly preferred”} 

Preference degree Pj associated with the jth SCO can be obtained by: 

‡”
5

1=
=
t

t

t

jj KuP                 (4) 

where the numerical values of Kt (t = 1, 2, …, 5) are assigned to describe the five utility 
expressions. The membership functions of the preference estimate can be decided by experts using 
the fuzzy Delphi method. Using the deffuzzification method in [15], the crispy values of the 
linguistic variables used to express the parameter preference can be obtained as follows: 

K1 = 0, K2 = 0.3, K3 = 0.5, K4 = 0.7, K5 = 1 

SCO selection can therefore be carried out on the basis of the preference degrees associated with 
the p SCOs with regard to the particular considerations of security and other decision attributes. It 
is obvious that a larger Pj means that the jth SCO is more desirable. The best SCO with the largest 
preference degree may be selected on the magnitudes of Pj. 

3  An Illustrative example 

The case introduced in the work by Yang et al. [17] is used and extended to illustrate the proposed 

framework in SCO selection and the inference reliability of the fuzzy rule-based approach in 
security assessment by comparing the results obtained from such two different studies. 

A port is highly likely to be attacked by terrorists using two ways, attacking the channel/ 
waterway or bombing the quayside infrastructures/facilities of the terminals. Either of them can be 
associated with several attacking modes (See the analysis associated with Fig. 1 and Table 3 in 
[17]). Suppose there are four security analysts. There are four SCOs, which are described as 
follows: 

SCO#1: AIS and Ship Identification Number. 

SCO#2: Security awareness education as well as security and rescue training and drills. 



SCO#3: Adequate perimeter fencing, lighting and locking, defending and cargo scanning devices 
and security equipments as well as supervision of transferring container cargo. 

SCO#4: A security officer designated in the selection of staff (including the consideration of the 
background of employees or the reputation of the labour agency) as well as the positive 
identification of all visitors and vendors. 

3.1  Ranking basic security events and calculating prior security estimate of top level events  

Suppose four security analysts make the judgements on each attacking mode for the calculation of 
the prior security level of a target port. The judgements are assessed on the basis of the four 
defined junior risk parameters. For example, the mode of “using a missile or bomb to attack the 
channel” (EXT-CHA) can be analysed in Table 2. Using Equation (1), the input (observations) in 
Table 2 can be transformed and the judgements can be uniquely expressed by linguistic variables 
in Table 3. Then the fuzzy input based on all expert judgements can be obtained using the ER 
approach. 

Table 2  An example of the subjective assessment of the junior risk parameters 

Expert W D R P 
E # 1 1, “Weak(W)” (0.3, 0.5, 0.7) {0.3, 0.4, 0.6, 0.7} 1, “Likely(L)” 
E # 2 (0.1, 0.3, 0.5) 0.5, “Moderate(M)”, 0.5, “Critical(Cr)” (0.3, 0.5, 0.7) {0.5, 0.6, 0.8, 0.9} 
E # 3 [0.2, 0.4] [0.4, 0.6] [0.4, 0.6] [0.6, 0.8] 
E # 4 0.3 {0.3, 0.4, 0.6, 0.7} 1, “Average(A)” (0.7, .08, 0.9) 

Table 3  The unique linguistic variable expressions of the junior risk parameters 

Expert W D R P 
E # 1 1, “W” 0.5, “M”, 0.5, “Cr” 0.17, “E”, 0.5 “A”, 0.33, “D” 1, “L” 
E # 2 0.21, “VW”, 0.53, “W”, 0.26, “A” 0.5, “M”, 0.5, “Cr” 0.14, “E”, 0.57 “A”, 0.29, “D” 0.43, “A”, 0.57, “L” 
E # 3 1, “W” 0.5, “M”, 0.5, “Cr” 1, “A” 1, “L” 
E # 4 1, “W” 0.5, “M”, 0.5, “Cr” 1, “A” 1, “L” 

Fuzzy input 0.04, “VW”, 0.92, “W”, 0.04, “A” 0.5, “M”, 0.5, “Cr” 0.06, “E”, 0.82 “A”, 0.12, “D” 0.07, “A”, 0.93, “L” 

Having known the fuzzy input, the evaluation of the senior risk parameter, SE can be performed 
using the proposed FRB-ER method. In the rule base, 320 rules have been established, of which 
only 36 rules are fired in this particular case, i.e. Rules #18, #19, #22, #23, #26, #27, #34, #35, 
#38, #39, #42, #43, #82, #83, #86, #87, #90, #91, #98, #99, #102, #103, #106, #107, #146, #147, 
#150, #43, #82, #83, #86, #87, #90, #91, #98, #99, #102, #103, #106, #107, #146, #147, #150, 
#151, #154, #155, #162, #163, #166, #167, #170 and #171. Based on the individual matching 
belief degrees, the activation weight θ k (k = 1,…, 36) of each rule in the fired sub-rule base is 
calculated using Equation (2). Consequently, the fuzzy rule expression matrix for the sub-rule 
base with the employed 36 rules is shown in Table 4. 

Table 4  The fuzzy rule expression matri x of the EXT-CHA risk analysis 

Antecedent attribute (input) Security estimate (output) Rule 
No W D R D θ Poor Fair Average Good 
18 Very weak Moderate  Easy Average 0.000084   0.5 0.5 
19 Very weak Moderate  Easy Likely 0.001116   0.55 0.45 
22 Very weak Moderate  Average Average 0.001148   0.7 0.3 
23 Very weak Moderate  Average Likely 0.015252   0.75 0.25 
26 Very weak Moderate  Difficult Average 0.000168   0.75 0.25 
27 Very weak Moderate  Difficult Likely 0.002232   0.8 0.2 
34 Very weak Critical  Easy Average 0.000084  0.2 0.7 0.1 



35 Very weak Critical  Easy Likely 0.001116  0.35 0.65  
38 Very weak Critical  Average Average 0.001148  0.3 0.7  
39 Very weak Critical  Average Likely 0.015252  0.5 0.5  
42 Very weak Critical  Difficult Average 0.000168  0.5 0.5  
43 Very weak Critical  Difficult Likely 0.002232  0.6 0.4  
82 Weak Moderate  Easy Average 0.002016   0.6 0.4 
83 Weak Moderate  Easy Likely 0.026784   0.75 0.25 
86 Weak Moderate  Average Average 0.027552   0.8 0.2 
87 Weak Moderate  Average Likely 0.366048   0.9 0.1 
90 Weak Moderate  Difficult Average 0.004032   0.9 0.1 
91 Weak Moderate  Difficult Likely 0.053568   1  
98 Weak Critical  Easy Average 0.002016  0.2 0.8  
99 Weak Critical  Easy Likely 0.026784  0.4 0.6  

102 Weak Critical  Average Average 0.027552  0.25 0.75  
103 Weak Critical  Average Likely 0.366048  0.45 0.55  
106 Weak Critical  Difficult Average 0.004032  0.5 0.5  
107 Weak Critical  Difficult Likely 0.053568  0.6 0.4  
146 Average Moderate  Easy Average 0.000084   0.9 0.1 
147 Average Moderate  Easy Likely 0.001116  0.05 0.95  
150 Average Moderate  Average Average 0.001148   1  
151 Average Moderate  Average Likely 0.015252  0.1 0.9  
154 Average Moderate  Difficult Average 0.000168  0.1 0.9  
155 Average Moderate  Difficult Likely 0.002232  0.25 0.75  
162 Average Critical  Easy Average 0.000084  0.35 0.55 0.1 
163 Average Critical  Easy Likely 0.001116  0.55 0.35 0.1 
166 Average Critical  Average Average 0.001148  0.3 0.7  
167 Average Critical  Average Likely 0.015252  0.5 0.5  
170 Average Critical  Difficult Average 0.000168  0.5 0.5  
171 Average Critical  Difficult Likely 0.002232  0.7 0.3  

In Table 4, the ER approach is used to implement the combination of the 36 rules and generate the 
security estimate of the EXT-CHA threat. The final assessment result can be computed as follows 
and is shown in Fig. 3. 

The prior SE of the EXT-CHA threat: {0, “Poor”, 0.188, “Fair”, 0.771, “Average”, 0.041, 
“Good”} 

 

Fig. 3  The securi ty estimate of the EXT-CHA threat 

This result can be interpreted in such a way that the security estimate of the EXT-CHA threat is 
“Fair” with a belief degree of 0.188, “Average” with a belief degree of 0.771, and “Good” with a 
belief degree of 0.041. 



Next, Equation (3) can be used to calculate the index value of the security estimate obtained for a 
ranking purpose as follows: 

Nv = 0 × 0 + 0.188 × 0.3125 + 0.771 × 0.5926 + 0.041 × 1 = 0.557 

Similar computations are performed for the other five basic events in the case. The security 
estimates generated for the VES-CHA, CARGO, EMPLOYEE, EXT-TER and VES-TER threats 
are summarised in Table 5. Since the FRB-ER and discrete fuzzy set approaches [17] have the same 
fuzzy input (subjective judgements), the fuzzy output should be kept in harmony to a significant 
extent in order to validate the reliability of the two different inference engines. The results have 
shown that the six basic events have been assessed with defuzzified values and ranked in an order 
to a quite similar extent with the results obtained from the work by Yang et al.[17]. The slight 
output difference in terms of deffuzzified values and ranking order is partly because of the 
application of different defuzzification methods and partly due to the accuracy of entirely 
subjective belief degree distributions in the rule base. 

The ER approach can be used not only to aggregate fuzzy rules for the security analysis of the 
basic events in the FRB-ER framework but also to assess the security of the whole system (top 
level event) as well. According to the study in the work[17], the weights of the basic events can be 
appropriately distributed and obtained. Consequently the prior security estimate of the top event 
can be calculated by synthesising all fuzzy input of the basic events in Table 5 with their 
individual weights as follows: 

The prior SE of the threat of terrorist attacking the port: {0.12, “Poor”, 0.371, “Fair”, 0.501, 
“Average”, 0.008, “Good”}. 

 

 

 

Table 5  Security analysis and ranking of the basic events 

Events 

Junior security 

para-m
eters 

E # 1 

E # 2 

E # 3 

E # 4 

Synthesised 

fuzzy input 

Senior security 

estim
ates 

R
anking 

(defuzz-ified 

values) 

W 

1, “W” 
(0.1, 0.3, 

0.5) 
[0.2, 0.4] 0.3 

0.04, “VW”, 

0.92, “W”, 0.04, 

“A” 

D (0.3, 0.5, 

0.7) 

0.5, “M”, 

0.5, “Cr” 
[0.4, 0.6] 

{0.3, 0.4, 

0.6, 0.7} 

0.5, “M”, 0.5, 

“Cr” 

R {0.3, 0.4, 

0.6, 0.7} 

(0.3, 0.5, 

0.7) 
[0.4, 0.6] 1, “A” 

0.06, “E”, 0.82, 

“A”, 0.12, “D” 

EXT-CHA 

P 
1, “L” 

{0.5, 0.6, 

0.8, 0.9} 
[0.6, 0.8] 

(0.7, 0.8, 

0.9) 

0.07, “A”, 0.93, 

“L” 

0, “P”, 

0.188, “F”, 0.771, 

“A”, 0.041, “G” 

0.557 

6 

VES-CHA 
W 

1, “S” 
(0.5, 0.7, 

0.9) 

{0.5, 0.7, 

0.8, 0.9} 
0.7 

0.1, “A”, 0.81, 

“S”, 0.09, “VS” 

0.42, “P”, 0.48, “F”, 

0.1, “A”, 

0.21 

1 



D (0.7, 0.9, 

1) 
1, “Ca” [0.8, 1] 

{0.8, 0.9, 1, 

1} 

0.09, “Cr”, 0.91, 

“Ca” 

R {0.7. 0.8, 

0.9, 1} 

(0.7, 0.8, 

1) 
[0.7, 0.9] 

0.5, “D”, 

0.5, “ED” 

0.48, “D”, 0.52, 

“ED” 

 

P 
1, “L” 

{0.6, 0.7, 

0.8, 0.9} 

[0.75, 

0.85] 

(0.7, 0.8, 

0.9) 

0.03, “A”, 0.97, 

“L” 

0, “G”  

W 
1, “VS” (0.8, 1, 1) 

{0.8, 0.9, 

1, 1} 
1 

0.08, “S”, 0.92, 

“VS” 

D (0.3, 0.5, 

0.7) 

0.5, “M”, 

0.5, “Cr” 
[0.4, 0.6] 

{0.3, 0.4, 

0.6, 0.7} 

0.5, “M”, 0.5, 

“Cr” 

R {0.4, 0.5, 

0.6, 0.7} 

(0.4, 0.5, 

0.6) 
[0.4, 0.6] 

0.8, “A”, 

0.2 “D” 

0.83, “A”, 0.17 

“D” 

CAR GO 

P 0.7, “A”, 

0.3 “L” 

{0.3, 0.4, 

0.5, 0.6} 
0.55 

(0.4, 0.5, 

0.6) 

0.78, “A”, 0.22 

“L” 

0.195, “P”, 0.463, 

“F”, 0.342, “A”, 

0, “G” 

0.347 

3 

 

 

W 
1, “A” 

[0.45, 

0.55] 
0.5 1, “A” 1, “A” 

D (0.3, 0.35, 

0.4) 
1, “M” [0.3, 0.4] 

{0.2, 0.3, 

0.4, 0.5} 

0.03, “N”, 0.94, 

“M”, 0.03, “Cr” 

R {0.3, 0.4, 

0.5, 0.6} 

(0.4, 0.5, 

0.6) 
[0.4, 0.6] 1, “A” 

0.03, “E”, 0.89, 

“A”, 0.08, “D” 

EMPLOYEE 

P 0.5, “L”, 

0.5 “D” 

{0.7, 0.8, 

0.9, 1} 
[0.8, 1] (0.8, 0.9, 1) 

0.56, “L”, 0.44 

“D” 

0.03, ”P”, 0.1, “F”, 

0.87, “A”, 

0, “G” 

0.492 

4 

W 0.5, “A”, 

0.5, “S” 

(0.5, 0.6, 

0.7) 
[0.5, 0.7] 0.6 0.5, “A”, 0.5, “S” 

D (0.3, 0.35, 

0.4) 
1, “M” [0.3, 0.4] 

{0.2, 0.3, 

0.4, 0.5} 

0.03, “N”, 0.94, 

“M”, 0.03, “Cr” 

R {0.4, 0.5, 

0.6, 0.7} 

(0.4, 0.5, 

0.6) 
[0.4, 0.6] 

0.8, “A”, 

0.2 “D” 

0.83, “A”, 0.17 

“D” 

EXT-TER 

P 
1, “L” 

{0.6, 0.7, 

0.8, 0.9} 

[0.75, 

0.85] 

(0.7, 0.8, 

0.9) 

0.03, “A”, 0.97, 

“L” 

0, “P” 

0.241, “F”, 0.755, 

“A”, 0.004, ”G”, 

0.527 

5 

W 
1, “S” 

(0.5, 0.7, 

0.9) 

{0.5, 0.7, 

0.8, 0.9} 
0.7 

0.1, “A”, 0.81, 

“S”, 0.09, “VS” 

D (0.6, 0.7, 

0.8) 

0.7, “Cr”, 

0.3 “Ca” 
0.75 

{0.6, 0.7, 

0.8, 0.9} 

0.74, “Cr”, 0.26, 

“Ca” 

R {0.4, 0.5, 

0.6, 0.7} 

(0.4, 0.5, 

0.6) 
[0.4, 0.6] 

0.8, “A”, 

0.2 “D” 

0.83, “A”, 0.17 

“D” 

VES-TER 

P 0.5, “L”, 

0.5 “D” 

{0.7, 0.8, 

0.9, 1} 
[0.8, 1] (0.8, 0.9, 1) 

0.56, “L”, 0.44 

“D” 

0.151, ”P”, 0.665, 

“F”, 0.184, “A”, 

0, “G” 

0.317 

2 

3.2  Making security-based decision making and selecting the best SCO  

The FRB-ER approach contributes itself to the subjective security assessment and also exposes its 
weaknesses such as the complexity of inference. Therefore, when more elements require to be 
considered in a wider context, the FLB-ER approach proposed in Section 3 can be used. In this 
example, suppose there are four criteria chosen to decide the preference of the four SCOs. They 
are separately Security (S), Cost (C), Technique Requirement (TR) and Implement Time (IT). 
Some criteria have their sub-criteria. For example, the prior and posterior security estimations are 



developed as the two sub-criteria of S, to demonstrate the security level changes after the 
implement of the SCOs. Such a hierarchy can be constructed in Fig. 4. 

 

Fig. 4  The hierarchy of securi ty based decision making 

Suppose the four security analysts make their judgments on the lowest level criteria, which have 
been synthesised using the ER approach and shown in Table 6. Note that the judgements 
associated with the posterior security estimates are obtained using the FRB-ER approach in a 
similar way in which the prior security estimates are calculated. The linguistic terms used to 
express TR and IT are separately the sets of (“Very high(VH)”, “High(H)”, “Average(A)”, 
“Low(L)”, “Very low(VL)”) and (“Very long(VL)”, “Long(L)”, “Average(A)”, “Short(S)”). 

Table 6  The decision making att r ibute assessments 

Lowest level 
criteria 

RCO#1 RCO#2 RCO#3 RCO#4 

Prior security 
estimate 

0.12, “P”, 0.371, “F”, 
0.501, “A”, 0.008, “G” 

0.12, “P”, 0.371, “F”, 
0.501, “A”, 0.008, “G” 

0.12, “P”, 0.371, “F”, 
0.501, “A”, 0.008, “G” 

0.12, “P”, 0.371, “F”, 
0.501, “A”, 0.008, “G” 

Posterior 
security 
estimate 

0, “P”, 0.221, “F”, 0.236, 
“A”, 0.543, “G” 

0, “P”, 0.033, “F”, 0.247, 
“A”, 0.72, “G” 

0.04, “P”, 0.288, “F”, 
0.433, “A”, 0.239, “G” 

0.012, “P”, 0.35, “F”, 
0.534, “A”, 0.104, “G” 

Technical 
requirement 

0, “VH”, 02, “H”, 0.5, 
“A”, 0.3, “L”, 0, “VL” 

0, “VH”, 0.7, “H”, 0.3, 
“A”, 0, “L”, 0, “VL” 

0, “VH”, 0, “H”, 0, “A”, 
0, “L”, 1, “VL” 

0, “VH”, 0, “H”, 0, “A”, 
0.2, “L”, 0.8, “VL” 

Implement time 0.9 “VL”, 0.1, “L”, 0, 
“A”, 0, “S” 

0, “VL”, 0.4, “L”, 0.6, 
“A”, 0, “S” 

0, “VL”, 0, “L”, 0.2, “A”, 
0.8, “S” 

0, “VL”, 0, “L”, 0, “A”, 
1, “S” 

Investment cost 0, “S”, 0.75, “La”, 0.25, 
“M”, 0, “Li” 

0.4, “S”, 0.6, “La”, 0, 
“M”, 0, “Li” 

0, “S”, 0.2, “La”, 0.7, 
“M”, 0.1, “Li” 

0, “S”, 0, “La”, 0, “M”, 
1, “Li” 

Maintenance 
cost 

0, “E”, 0, “R”, 0.9, “M”, 
0.1, “N” 

0.2, “E”, 0.8, “R”, 0, 
“M”, 0, “N” 

0, “E”, 0.45, “R”, 0.55, 
“M”, 0, “N” 

0, “E”, 0, “R”, 0.25, “M”, 
0.75, “N” 

In order to obtain the best SCO, the judgements and estimates associated with each SCO require to 
be considered, combined and then defuzzified. However, as the fuzzy sets used to describe the 
judgements are defined on the basis of different universes, it may not be convenient to directly 
implement such a synthesis using the ER approach. It will be desirable that the FLB-ER approach 
can be used to carry out a unification of the different decision making attribute estimates in order 



to avoid loss of useful information. Next, using the transforming graphic technique introduced in 
Fig. 2, the judgements listed in Table 6 can be transformed and expressed on a unified space, the 
preference of decision makers, as shown in Table 7. 

Table 7  The unified decision making att ribute assessments 

Lowest level 
criteria 

RCO#1 RCO#2 RCO#3 RCO#4 

Prior security 
estimate 

0.008, “SP”, 0.375, 
“MP”, 0.311, “A”, 0.21, 
“P”, 0.096, “GP” 

0.008, “SP”, 0.375, 
“MP”, 0.311, “A”, 0.21, 
“P”, 0.096, “GP” 

0.008, “SP”, 0.375, 
“MP”, 0.311, “A”, 0.21, 
“P”, 0.096, “GP” 

0.008, “SP”, 0.375, 
“MP”, 0.311, “A”, 0.21, 
“P”, 0.096, “GP” 

Posterior 
security 
estimate 

0, “SP”, 0.177, “MP”, 
0.257, “A”, 0.159, “P”, 
0.407, “GP” 

0, “SP”, 0.026, “MP”, 
0.229, “A”, 0.205, “P”, 
0.54, “GP” 

0.04, “SP”, 0.23, “MP”, 
0.447, “A”, 0.103, “P”, 
0.18, “GP” 

0.012, “SP”, 0.28, “MP”, 
0.551, “A”, 0.079, “P”, 
0.078, “GP” 

Technical 
requirement 

0, “SP”, 02, “MP”, 0.5, 
“A”, 0.3, “P”, 0, “GP” 

0, “SP”, 0.7, “MP”, 0.3, 
“A”, 0, “P”, 0, “GP” 

0, “SP”, 0, “MP”, 0, “A”, 
0, “P”, 1, “GP” 

0, “SP”, 0, “MP”, 0, “A”, 
0.2, “P”, 0.8, “GP” 

Implement time 0.9, “SP”, 0.08, “MP”, 
0.02, “A”, 0, “P”, 0, 
“GP” 

0, “SP”, 0.32, “MP”, 
0.38, “A”, 0.3, “P”, 0, 
“GP” 

0, “SP”, 0, “MP”, 0.1, 
“A”, 0.18, “P”, 0.72, 
“GP” 

0, “SP”, 0, “MP”, 0, “A”, 
0.1, “P”, 0.9, “GP” 

Investment cost 0, “SP”, 0.6, “MP”, 
0.338, “A”, 0.062, “P”, 0, 
“GP” 

0.4, “SP”, 0.48, “MP”, 
0.12, “A”, 0, “P”, 0, 
“GP” 

0, “SP”, 0.16, “MP”, 
0.565, “A”, 0.185, “P”, 
0.09, “GP” 

0, “SP”, 0, “MP”, 0, “A”, 
0.1, “P”, 0.9, “GP” 

Maintenance 
cost 

0, “SP”, 0, “MP”, 0.09, 
“A”, 0.81, “P”, 0.1, “GP” 

0.2, “SP”, 0.16, “MP”, 
0.64, “A”, 0, “P”, 0, 
“GP” 

0, “SP”, 0.09, “MP”, 
0.415, “A”, 0.495, “P”, 0, 
“GP” 

0, “SP”, 0, “MP”, 0.025, 
“A”, 0.225, “P”, 0.75, 
“GP” 

Suppose the weights of decision making attributes and sub-criteria have been distributed in Table 
8 by the four experts using an AHP method. Then, the judgements produced in Table 7 can be 
synthesised to obtain the utility description on the four SCOs using the ER approach, which can be 
further defuzzified as a crispy value for ranking the SCOs using Equation (4) as follows: 

The preference assessment of the RCO#1: P1 = {0.21, “SP”, 0.222, “MP”, 0.273, “A”, 0.194, “P”, 
0.101, “GP”} = 0.44 

The preference assessment of the RCO#2: P2 = {0.076, “SP”, 0.373, “MP”, 0.313, “A”, 0.119, “P”, 
0.119, “GP”} = 0.471 

The preference assessment of the RCO#3: P3 = {0.009, “SP”, 0.081, “MP”, 0.265, “A”, 0.131, “P”, 
0.514, “GP”} = 0.836 

The preference assessment of the RCO#4: P4 = {0.002, “SP”, 0.058, “MP”, 0.113, “A”, 0.106, “P”, 
0.721, “GP”} = 0.969 

It can be noted that in this case, SCO#4 is ranked first, SCO#3 second, SCO#2 third and SCO#1 
last. This implies that security and other decision making attributes are considered equally 
important while carrying out the security control evaluation, the best selection is SCO#4. When 
the relative importance of security against other attributes changes, there may be different ranking 
orders of the SCOs. Suppose the relative weights of all the attributes and sub-attributes except 
security remain unchanged shown in Table 8. Fig. 5 shows the preference degrees associated with 
the four SCOs at different values of relative importance of security and the other attributes (TR, IT, 
C). For example, when the relative importance of security against the other attributes increases by 
400%, the ranking of the four SCOs is SCO#2>SCO#4>SCO#3>SCO#1. 

Table 8  The weights of decision making att ributes 



 
Prior security 

estimate 
Posterior security 

estimate 
Technical 

requirement 
Implement 

time 
Investment 

cost 
Maintenance 

cost 
Weight ratio 0.1 0.9 1 1 0.6 0.4 
Normalised 

weights 
0.025 0.225 0.25 0.25 0.15 0.1 

 

Fig. 5  Ranking of the SCOs 

4  Conclusion 

This paper outlines and explains a philosophy of subjective security based decision making 
modelling for maritime security assessment and management using fuzzy logic and ER 
approaches. For each SCO, the prior and posterior security estimates of each basic event are first 
carried out using the security analysis model based on the application of the FRB-ER approach. 
Then the ER approach is used to synthesise the prior/posterior security estimates to obtain the 
security estimates of the top event as the security attributes of the SCOs. Finally, the synthesis of 
security and other decision making attributes are performed using the MADM modelling based on 
a FLB-ER approach and mapped onto a common utility space before proceeding to the preference 
estimation and ranking SCOs. 

Different from most conventional risk based decision making methodologies, the framework 
introduced is characterised with a unique feature associated with unification of input and output 
data. In the security analysis modelling, each input can be represented as a probability distribution 
on linguistic values for the antecedent using a belief structure. The main advantage of doing so is 
that precise data, random numbers and subjective judgements with uncertainty can be consistently 
modelled under a unified form. In the decision making modelling, the input data transformed by 
the linked belief structures can be unified and take into account subjective experts judgements 
with uncertainties having both probabilistic and possibilistic nature. Moreover, the ER approach 
provides a novel procedure for aggregating calculation, which can preserve the original features of 
multiple attributes with various types of information. This provides a solution for solving the 
difficulty of subjective risk assessment results involving academic bias resulting from various 
options from different individuals. Therefore, two kinds of combination of the fuzzy logic and ER 

Ranking SCOs
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approaches can offer great potential in maritime security assessment and management. 
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