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Data fusion and machine learning for ship fuel efficiency analysis:

a small but essential step towards green shipping through data analytics

Theme 2:

Future opportunities and challenges of the sustainability of maritime industry
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Research Coordinator

Dr Yuquan (Bill) Du
Senior Lecturer, Australian Maritime College, University of Tasmania, Australia
yuquan. du@utas.edu.au

Abstract The shipping industry is concerned about ship fuel/energy efficiency due to the motivation
of saving bunker fuel cost and mitigating ship emissions. A foundation for various energy/emission-
efficient measures is the accurate quantification of bunker fuel consumption of a ship in one day or
hour given its sailing speed, draft/displacement, trim, weather conditions, and sea conditions. This
study takes advantage of four industry data sources including voyage report data, AIS data, sensor
data, and meteorological data, and fuses these data sources to find the best datasets for ship fuel
efficiency analysis. Based on fused datasets, we experimented with state-of-the-art machine
learning models to quantify a ship’s daily/hourly bunker fuel consumption, over eight 8,100-TEU
to 14,000-TEU containerships of a global shipping company. When voyage report data is used as
the basis for ship fuel/emission analysis, meteorological data and AIS data can be combined into
voyage report data to improve the data quality. The fit errors of best machine learning models over
the recommended datasets are normally within 5 ton/day, and can be as low as less than 1 ton/day.
When sensor data is considered, combining meteorological data (waves, sea currents, sea water
temperature) into sensor data will significantly improve the modeling accuracy. The best machine
learning models achieve their R? at 0.999 or 1.000 on the training sets, and their R? values over the
test sets are also all above 0.966. Their fit errors are below 0.75 ton/day (RMSE), or below 0.52
ton/day (MAE). The proposed datasets and models would be useful for sailing speed optimization,
trim optimization, weather routing, voyage planning, and virtual (just-in-time) arrivals. We also
published our computer code in Python and trained machine learning models in GitHub which is
accessible to the public.

Keywords: Ship fuel efficiency, Fuel consumption rate, Voyage report, Sensor data, AlS data,
Meteorological data, Data fusion, Machine learning




Executive Summary

With promotions of the International Maritime Organization (IMO) and governmental organizations,
the shipping industry has been implementing operational measures to save bunker fuel and mitigate
emissions from ships, including sailing speed optimization, trim optimization, weather routing, and the
virtual arrival policy. Many frustrations have been emerging during the process of implementation of these
measures. These frustrations are boiled down, if not fully, to how we can quantify the synergetic
contributions of many factors (speed, draft/displacement, trim, weather conditions, sea conditions) on a
ship’s bunker fuel consumption rate (ton/day, ton/hour). A latest review paper points out that the basis of
all operational measures for ship bunker fuel savings and emission mitigation is quantitatively modeling
the relationship between fuel consumption rate and many determinants, including sailing speed,
draft/displacement, trim, weather conditions, and sea conditions. This project addresses this theoretical
challenge that restricts the implementation of energy-efficient operational measures by investigating the
complementary roles of different data sources available to a shipping company, fusing these data sources,
and employing state-of-the-art machine learning techniques.

We collected voyage report data and sensor data of eight 8,100-TEU to 14,000-TEU
containerships from a global shipping company, purchased the AIS data of these ships from
MarineTraffic with the financial support of the International Association of Maritime Universities
(IAMU), and downloaded meteorological data from European Centre for Medium-range Weather
Forecasts (ECMWF) and Copernicus Marine Service (CMEMS). Based on the information contained in
these four data sources, we designated three data fusion solutions (DFSs): DFS1 fuses voyage report
data and meteorological data, by considering the inaccurate information of weather and sea conditions
recorded by voyage report; DFS2 further fuses AIS data into voyage report data and meteorological data
because AIS data helps find the actual sailing trajectory of the ship and thus helps retrieve more accurate
information of weather and sea conditions from meteorological data; DFS3 approaches sensor data as
the main data source of a ship’s fuel consumption rate, and overcomes the limitation of sensor data by
taking advantage of the complete information of weather and sea conditions contained in meteorological
data. For each of the data fusion solutions, eight to nine datasets are constructed.

Over these datasets from three data fusion solutions, a large range of widely adopted machine
learning models were experimented with, including decision tree-based models, artificial neural
network (ANN), support vector machine (SVM), ridge regression (Ridge), and LASSO. Tree-based
models include the basic decision tree (DT) model and models produced by two ensemble strategies:
Extremely randomized trees (ET) and random forest (RF) from the bagging ensemble strategy;
AdaBoost (AB), gradient tree boosting (GB), XGBoost (XG), and LightGBM (LB) from the boosting
ensemble strategy. During the experiments with these machine learning models, the impacts of data
normalization, hyperparameter optimization, and the randomness in splitting training sets and test sets
are well addressed.

Extensive experiments were conducted to answer three research questions regarding the
choice of datasets from three data fusion solutions and the choice of machine learning models. A
voting scheme is developed to break down the impacts of dataset choice and model choice. When dataset
choice is considered, the original voyage report dataset Set1 has a decent quality for ship fuel efficiency
modeling; if more effort is paid to fuse voyage report data and meteorological data, data quality
improves slightly and Set3preise can be adopted. When AIS data is available, further including AIS data
might also be beneficial, which suggests the adoption of the dataset Al SSyrecise. Overall, the best datasets
found with DFS1 and DFS2, including Setl, Set3precise, and Al S5precise, €nsure accurate fit performances
of best ML models: R? on the training set is above 0.96 and even reaches 0.99 to 1.00, and R? on the test



set is between 0.74 and 0.90; the fit errors measured by RMSE (Root Mean Square Error) and MAE
(Mean Absolute Error) are between 0.5 and 4.5 ton/day. When sensor data, rather than voyage report
data, is used as the main data source of ship bunker fuel consumption analysis, it elevates the modeling
accuracy to a higher level, possibly the highest level if meteorological data is fused in. With DFS3,
given the best dataset Sensor2, the best ML models achieve their R? values over the training set at 0.999
or 1.000, and their R? values over the test set are all above 0.966. Their fit errors with RMSE values are
below 0.75 ton/day, and with MAE below 0.52 ton/day.

As far as ML model choice is concerned, we recommend the installation of four decision-tree
based models including ET, AB, GB, and XG because they usually possess the highest fit performance
and good generalization performance. Their performances are also quite robust against random splits of
a dataset into training and test sets. Our experiments with DFS1, DFS2, and DFS2 reach consistent
findings about the performances of ML models and rank their performances into four tiers.

e Tier 1: ET, AB, GB, and XG.
Tier 2: RF, LB

Tier 3: DT, SVM, ANN

Tier 4: Ridge, LASSO.

Apart from this technical report, as the research outcomes, this project produces three research
papers that have been submitted to a peer-review journal. We have also developed course material
(teaching slides) for a three-hour teaching module for IMO’s TTT course on Energy Efficient Ship
Operations, titled “Understanding ship fuel efficiency with real data”. To broadcast our research findings
to the maritime industry, we delivered three industry presentations to industry professionals in May
2022 in_Europe, Australia, and Asia, respectively. Computer code in Python in this study is
published in GitHub as a software infrastructure to reduce the exploration efforts of industry

professionals. Best trained machine learning models are also published in GitHub, which enables
maritime researchers to estimate the bunker fuel consumption rates of different sizes of mega
containerships in different sailing speed, draft, trim and weather/sea conditions. Reader can find our
Python code and trained machine learning models in the URL below:
https://github.com/yuquandu/Data-driven-Ship-Fuel-Efficiency-Modeling

Our recommendations for industry application are summarized in the following table.

Industry applications e Sailing speed optimization Trim optimization
e Weather routing
e Virtual (just-in-time) arrival
Industry stakeholders |e Shipping companies Shipping companies
¢ Weather information service
providers (WISPs)
o Ship classification societies
(such as ClassNK)
e Shipping associations
(such as BIMCO)
Recommended data ¢ DFS1: Voyage report data + DFS3: sensor data +
sources and datasets meteorological data meteorological data
® DFS2: Voyage report data +
meteorological data + AIS data

Recommended models Extremely randomized trees (ETs), Extremely randomized trees
Gradient tree boosting (GB), or (ETs), Gradient tree boosting
XGBoost (XG) (GB), or XGBoost (XG)
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1. Introduction

1.1 Background and Research Questions

Reducing bunker fuel consumption of ships is paramount for the shipping industry with both
commercial and environmental implications. Shipping companies have been always striving to reduce
their bunker fuel costs of their fleets in marine operations because bunker fuel cost typically accounts
for about 20% to 61% of a ship's operating costs (Meng et al., 2016; Soner et al., 2018). Meanwhile,
reduction in bunker fuel consumption lies in the core of progressively stricter regulations on ship
emissions proposed by the International Maritime Organization (IMO, 2020) and other international or
national organizations such as European Union (EU, 2021), because ship emissions, especially CO2,
NOx and SOx, are proportional to the bunker fuel consumption (Adland et al., 2019).

Shipping industry stakeholders, such as shipping companies, IMO, EU, and other governmental
organizations, are making unprecedented efforts to reduce bunker fuel consumptions of ships and the
accompanying emissions. Due to the expensiveness of technical solutions, shipping companies have
been passionate in adopting various operational measures to reduce bunker fuel consumption, including
weather/environmental routing, speed optimization, and trim optimization, and virtual (just-in-time)
arrival policy (IMO, 2012; Coraddu et al., 2017; Li et al., 2018; Wan et al, 2018; Merkel et al., 2022).
IMO has been calling on the shipping industry to implement the Data Collection System (EEOI, AER,
DIST, TIME), Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan
(SEEMP), and in-progress Energy Efficiency eXisting ship Index (EEXI) and Carbon Intensity Index
(CII) (Wang et al., 2021; Yan et al., 2021). EU also rolled out its Monitoring, Reporting and Verification
(MRV) system from 2018.

However, during this process, many frustrations are heard from the shipping industry. In sailing
speed optimization, a ship’s fuel efficiencies, usually measured as its fuel consumption rate in terms of
metric ton (MT) per hour, or MT per day, in different weather and sea conditions are hard to captured
by deck officers. Therefore, a simple sprint-and-loiter practice is widely adopted (Johnson and
Andersson, 2011; C-MAP, 2022). Regarding trim optimization, it is believed that trim optimization can
save 4-6% (even up to 15%) of bunker fuel, according to various reports issued by IMO and DNV.
However, our collaboration with some shipping companies received many complaints about the current
trim optimization practice. Captains at sea feel that trim charts/tables/matrices based on model ship tests
or computational fluid dynamics (CFD) calculation are not convincing, because these trim
charts/tables/matrices cannot reflect the influence of weather and sea conditions on trim optimization
and the suggested optimal trim value sometimes even cannot guarantee the full submergence of the
propellor in sea water. Third, our discussion with seafarers also saw their complaints about the weather
routing services provided by Weather Information Service Providers (WISPs). The weather routing
services of WISPs are expensive, and the data transferred is often outdated or delayed. Therefore, many
deck officers having been relying more and more on manual voyage/route planning with the assistance
of real-time weather information websites, such as Windy.com. Fourth, when it turns to the virtual (just-
in-time) arrival policy, Rehmatulla et al. (2017), Adland et al. (2020) and Merkel et al. (2022) report
that a major barrier to this policy is quantitively assessing the bunker fuel consumption in different
speed-weather scenarios and precisely calculating the cost savings of the policy for each voyage.

All these frustrations are boiled down, if not fully, to how we can quantify the synergetic
contributions of many factors (speed, draft/displacement, trim, weather conditions, sea conditions) on a
ship’s bunker fuel consumption rate. A latest review paper, Yan et al. (2021), also points out that the
basis of all operational measures for ship bunker fuel savings and emission mitigation is the
quantitatively modeling the relationship between fuel consumption rate and many determinants,




including sailing speed, draft/displacement, trim, weather conditions, and sea conditions, but it is not a
trivial work.

As stated by Yan et al. (2021), there are two elementary factors that determine the accuracy of ship
fuel efficiency modeling: choice of data, and choice of models. There are several sets of data sources
that can support ship fuel efficiency modelling of a shipping company: voyage report data, sensor data,
automatic identification system (AIS) data, ship mechanical data, ship maintenance data, and
meteorological data. Haranen et al. (2016) and Yan et al. (2021) categorize ship fuel efficiency models
as three classes: white-box models (WBMs), black-box models (BBMs), and grey-box models (GBMs),
and discusses the advantages and disadvantages of each model class and the importance of selecting
specific models.

The systematic review of Yan et al. (2021) summarizes the existing research efforts of data
collection and ship fuel efficiency analysis with varieties of models, especially machine learning (ML)
models. However, few of them consider the complementary role of different data sources. For instance,
the quality of voyage report data about snapshotted weather and sea conditions is questionable, but this
might be remedied by the publicly accessible meteorological data, such as the data of wind, waves, and
sea water temperature from European Centre for Medium-range Weather Forecasts (ECMWF), and the
data of sea currents from Copernicus Marine Service (CMEMS). Meanwhile, through AIS data, we can
access the sailing trajectory of a ship over a day and the data about the positions of the ship might help
us to find more accurate weather and sea conditional data from meteorological data. As another example,
sensor data provides high-quality information on a ship’s sailing profile including wind conditions, but
the information of waves, sea water temperature, and sea currents is often absent. This may be
complemented by the detailed meteorological data that are publicly accessible.

Therefore, the following research questions (RQs) could be asked by both academics and industry
professionals:

e RQL. Is it possible to combine/fuse different but complementary data sources for the sake of
modeling accuracy for ship fuel efficiency analysis? And how these data sources can be fused?

e RQ2. Compared to a single data source, what are the benefits of fusing different data sources
in terms of modeling accuracy and generalization?

o RQ3. Selection of datasets and choice of models are two different decision dimensions but they
rely on each other. When these two decisions are interwoven, how can we select the best datasets
and best models?

1.2 Research Outputs

This project produces the following research outcomes.

e Three papers submitted to the peer-reviewed journal Communications in Transportation
Research.

Xiaohe Li, Yuquan Du, Yanyu Chen, Son Nguyen, Wei Zhang, Alessandro Schénborn, Zhuo Sun,
2022. "Data fusion and machine learning for ship fuel efficiency modeling: Part | — voyage
report data and meteorological data". Submitted to Communications in Transportation
Research.

Yuguan Du, Yanyu Chen, Xiaohe Li, Alessandro Schénborn, Zhuo Sun, 2022a. " Data fusion and
machine learning for ship fuel efficiency modeling: Part |1 —voyage report data, AlS data and
meteorological data". Submitted to Communications in Transportation Research.



Yuguan Du, Xiaohe Li, Yanyu Chen, Alessandro Schénborn, Zhuo Sun, 2022b. " Data fusion and
machine learning for ship fuel efficiency modeling: Part |11 — sensor data and meteorological
data". Submitted to Communications in Transportation Research.

e This final report that is written based on the preprint version of the above three papers.

o Software infrastructure and trained machine learning models. Computer code in Python in
this study is published in GitHub as a software infrastructure to reduce the exploration efforts
of industry professionals. Best trained machine learning models are also published in GitHub,
which enables maritime researchers to estimate the bunker fuel consumption rates of different
sizes of mega containerships in different sailing speed, draft, trim and weather/sea conditions,
though our raw data are confidential. The machine learning models published are completely
black boxes, and one cannot conduct reverse engineering to access the original datasets. Readers
can find the computer code and trained machine learning models in the URL:
https://github.com/yuquandu/Data-driven-Ship-Fuel-Efficiency-Modeling.

¢ Course material contribution to IMO’s TTT course. To enhance the impacts of this IAMU
project, we have developed course material (teaching slides) for a three-hour teaching module
for IMO’s TTT course on Energy Efficient Ship Operations, titled “Understanding ship fuel
efficiency with real data”. All the major methodologies and experimental findings have been
included in these slides. We have asked our research partner at World Maritime University
(WMU) to bring the knowledge found by this project to IMO’s TTT Course. It is intended that
the knowledge created by this research project will be passed onto future generations through
teaching.

e Three industry presentations. The research findings in this project were also broadcast to
industry professionals through three industry presentations. Presentation 1 was conducted by
our research partner at WMU on 10 May 2022 to CETENA (a maritime research & training
company based in Italy). Presentation 2 was conducted by our AMC (Australian Maritime
College) side on 27 May 2022 to Australian Maritime Logistics Research Network. This
presentation was joined by senior professionals from Marine Operations Department of
Australian National Line and industry professionals from Shipping Australia Limited.
Presentation 3 was conducted by our research partner at DMU (Dalian Maritime University)
on 29 May 2022 through a webinar to a wide cohort of maritime industry professionals in Asia.

1.3 Structure of the Report

The remainder of this report is organized as follows. Section 2 conducts a literature review and
clarifies the research gaps. Section 3 summarizes our research efforts, discusses our contributions to
existing literature, and clearly defines our research scope/boundary. Section 4 discusses the four data
sources utilized by this project, including voyage report data, sensor data, AIS data, and meteorological
data. Section 5 presents the technical details of machine learning models used by this project. Section 6
proposes the approach of fusing voyage report data and meteorological data and discusses the
experimental findings. Section 7 proposes the approach of fusing voyage report data, AIS data, and
meteorological data and discusses the experimental findings. Section 8 proposes the approach of fusing
sensor data and meteorological data and discusses the experimental findings. Section 9 summarizes the
findings of the whole project, proposes the recommendations for industry applications, and discusses
the limitations of the studies in this project.




2. Literature Review and Research Gaps

2.1 Literature Review

Our studies focus on accurately modeling the relationship between ship fuel consumption rate
(MT/h or MT/day) and several determinants, including sailing speed, draft/displacement, trim, weather
conditions, and sea conditions, by using machine learning models. In this regard, Yan et al. (2021)
conduct a systematic literature review for academic papers and technical reports published from 2008
(one year before the implementation of IMO EEOI) and 2021. In this taxonomy, machine learning
models is one of the two types of BBMs, in parallel with statistical BBMs. To avoid duplicating the
systematic review of Yan et al. (2021), we will only have a quick review about the BBM literature that
involve two or more data sources, because our studies are addressing the research questions about the
benefits of fusing several data sources and machine learning models.

Bocchetti et al. (2015) collect the data of a cruise ship from voyage report (a.k.a. noon report) and
onboard sensors about ship maintenance and operations and sea and weather conditions, and develop a
multiple linear regression (MLR) model. Their research purpose is to predict the fuel consumption of
this cruise ship in a voyage, rather than that in a day or hour. Meanwhile, a systematic query is absent
to how to select the best dataset by considering all the possible datasets that can be produced by voyage
report and sensor data.

Adland et al. (2018) consider voyage report and hull maintenance data of a fleet of eight sister
Aframax crude oil tankers, and perform a MLR analysis on fuel consumption rate. Their research
purpose is to assess the impact of hull cleaning on ship fuel efficiency and thus combine the voyage
reports of eight ships together. This is different from our studies that aim to build ship-specific fuel
efficiency models for the applications of daily marine operations at sea, relying on daily operational data
sources including voyage reports, sensor data, AIS data, and meteorological data.

As far as we know, Lee et al. (2018) is the first attempt to combine two daily operational data
sources at sea for ship fuel consumption rate estimation. They fuse the data about voyages and
meteorological data from CMEMS and develop a data mining algorithm that mines the impact of wind
on ship fuel consumption rate. However, the adopted data about voyages is not voyage report data but
“voyage abstract data” in which there is only one data entry for each voyage. This limitation on data
availability makes the authors rely on a polynomial regression model of ship fuel efficiency proposed
by Yao et al. (2012).

Gkerekos et al. (2019) utilize voyage report data and the data from an automated data logging &
monitoring (ADLM) system. The data from the ADLM system is sensor based but its frequency, hourly,
is lower than traditional sensor data which generally has a data entry about every 10-15 minutes.
Meanwhile, they regard voyage report and ADLM data as two independent data sources and their
purpose is to compare the performance of machine learning models on these two different data sources.
The possibility of fusing different data sources is not discussed.

Man et al. (2020) make pioneering efforts to fuse different data sources by considering five ferries
and collecting their sensor data, AIS data, meteorological data, and the captains’ log on the estimated
time of arrival (ETA) and summarized fuel consumption in each journey. Though four data sources are
mentioned, their study mainly combines sensor data and meteorological data. Their AIS data from a
Swedish company is not reliable to track the ship probably because the voyages of ferries between
Gothenburg and Kiel are rather short compared to commercial cargo ships at open sea. This paralyzes
the main advantage of AIS and make them approach a linear interpolation method to calculate the sailing
trajectory of these ferries. Six datasets are produced after data fusion and they are tested with a multi-
layer perceptron model and a self-organizing map model. The prediction target of their machine learning



models is fuel consumption in a journey, rather than fuel consumption rate, which is different from our
studies and from most studies reviewed by Yan et al. (2021). Their data structure and the nature of short
sea sailing of the five ferries under investigation could challenge the applicability of their data fusion
plans and experimental findings to the shipping practice of cargo ships such as containerships and oil
tankers.

Farag and Olger (2020) adopt an artificial neural network (ANN) model to estimate a tanker ship’s
brake power based on serval determinants such as sailing speed and weather and sea conditions. They
utilize a dataset provided by NAPA Group that is extracted from the ship’s automatic continuous
monitoring system (ACMS), AIS data, and meteorological data, but NAPA hides the details on how
these data sources are combined.

Uyanik et al. (2020) combine voyage report and sensor data and populate 75 variables/features into
their machine learning models. This is appropriate because their research purpose is to monitor engine
performance and their models will be used by engine rooms. This is significantly different from our
studies that target ship fuel efficiency model to be used by deck officers and captains for their daily
sailing planning.

2.2 Research Gaps
Contrasting the research questions proposed in Section 1 and literature review conducted in Section
2.1, we can easily see the following research gaps posed by existing literature:

e  Existing studies of ship fuel efficiency analysis that combine/fuse multiple data sources and
explore their complementary roles are rare.

e Among these rare studies, only Lee et al. (2018), Man et al. (2020), and Uyanik et al. (2020)
propose clear data fusion solutions and fuel efficiency models/algorithms from the perspective
of a ship’s daily sailing operation.

e To address the industry frustrations in speed optimization, trim optimization, water routing, and
virtual arrival policy, a reliable model is needed that can accurately estimate a ship’s bunker
fuel consumption rate (MT/day, MT/h) based on several determinants outside of a ship’s engine
(sailing speed, draft/displacement, trim, weather conditions, and sea conditions). None of Lee
etal. (2018), Man et al. (2020), and Uyanik et al. (2020) achieve this, not to mention a systematic
research effort to construct promising fused datasets from voyage report, AIS data, sensor data,
and meteorological data and to select the best datasets according to the fit and generalization
performances of multiple machine learning models.

3. Research efforts, contributions, and scope/boundary

3.1 Research efforts and contributions

To address the research questions and gaps identified and build reliable fuel consumption rate
forecast models that can be used in energy-efficient operational measures (speed optimization, trim
optimization, water routing, and virtual arrival policy), we approached different industry stakeholders
and collected/purchased all the four most relevant data sources that a shipping company can access, for
eight modern mega containerships in different sizes: voyage report data, sensor data, AIS data, and
meteorological data.

Then we analyzed the data structure of these data sources and proposed the following three possible
data fusion/combination solutions, by discussing with a global shipping company, envisaging the




possible industry application scenarios, and considering the endogeneity issue pointed by Yan et al.
(2021):

e Data fusion solution 1 (DFS1): voyage report data + meteorological data.
e Data fusion solution 2 (DFS2): voyage report data + meteorological data + AIS data.
e Data fusion solution 3 (DFS3): sensor data + meteorological data.

For each data fusion solution, we constructed the all the possible datasets by taking into account the
industry applications and the impact of endogeneity on feature/variable selection. Then we tested the
fit and generalization performances of machine learning models widely adopted in literature over these
possible datasets. When the decisions of dataset selection and model choice are interwoven, we adopted
a voting scheme to enable machine learning models vote for best datasets.

Experiments with these industry data and machine learning models revealed many useful insights
on the benefits of fusing these different data sources, selection of the best datasets, and choice of best
machine learning models. Using the same ships, it also allowed us to compare the benefits of different
data sources and compare the benefits of different data fusion solutions.

Towards the three data fusion solutions DFS1, DFS2, DFS3, for the first time, this project provides
industry professionals with clear answers to RQ1 to RQ3 with extensive and intensive experimental
evidence from different sizes of mega containerships. This project lays a solid theoretical foundation to
accurately quantify a ship’s fuel consumption rate in the energy-efficient operational measures being
promoted by IMO, including sailing speed optimization, trim optimization, route selection (weather
routing), and the virtual arrival policy.

3.2 Research scope
To avoid possible confusions, we define our research scope/boundary as follows.

(a) We only consider the fuel consumption of the main engine (M/E) of a ship, but will not consider its
auxiliary engines and boilers.

(b) This project targets ship-specific fuel efficiency models, which means every model built is for a
specific ship. This is different from the study that combines the data of a fleet of ships and develop
a model for the fleet (Adland et al., 2018).

(c) For the purpose of applications of models in sailing speed optimization, trim optimization, route
optimization, and the virtual arrival policy, our studies only adopt the features outside of a ship’s
mechanical system (engine and propulsion) as the input variables of a model, including sailing speed,
draft/displacement, trim, and factors about weather and sea conditions. We will not consider the
technical features regarding engine and propellor performance such as engine RPM (rotations per
minute), engine power, shaft power, and propellor pitch. See the discussion of Yan et al. (2021) on
the endogeneity issue and application scenarios of different types of models.

(d) The output/dependent variable of our model, i.e., the prediction target, is the fuel consumption rate
in terms of MT/day (or equivalently MT/h), rather than fuel consumption in a voyage or journey in
term of MT or specific fuel oil consumption (SFOC) in terms of g/kWh.

(e) Accordingly, only data sources relevant to a ship’s voyage management and sailing behaviours will
be utilised, including voyage report data, sensor data, AIS data, and meteorological data. Other data
sources discussed by Yan et al. (2021) and ship fuel efficiency models based on those sources are
not relevant to energy-efficiency operational measures for voyage management (speed optimization,
trim optimization, route selection/weather routing, virtual arrival policy).




(f) We only test the machine learning models, especially those widely adopted in literature. We will not
consider WBMs, statistical BBMs or GBMs that are discussed in Yan et al. (2021). See Yan et al.
(2021) for a detailed discussion about the pros and cons of each type of models.

4. Data sources

Voyage report data, sensor data, AIS data, and meteorological data are the major data sources that
a shipping company can access for the purpose of ship fuel efficiency analysis. This section discusses
how we approached these four data sources and the information structure of each of data source. The
particulars of eight ships whose data are utilized for experiments throughout this project are tabulated
in Table 1.

Table 1. Particulars of eight ships used for experiments

Ship | Year built | Capacity Size Draft recorded: | Speed recorded:

(TEU) (length/beam) Avg/Max (m) | Avg/Max (knots)
S1 2013 14,000 398m/51m 13.5/25.1 13.9/23.3
S2 2013 14,000 398m/51m 14.1/21.5 13.8/23.3
S3 2012 11,000 347m/45m 13.7/23.8 12.7/23.6
S4 2012 11,000 347m/45m 12.1/15.7 12.9/24.4
S5 2013 9,200 328m/45m 11.7/19.3 12.4/24.0
S6 2014 9,200 328m/45m 12.6/23.5 12.8/22.3
S7 2013 9,200 328m/45m 12.4/17.4 12.3/23.1
S8 2013 8,100 320m/46m 12.0/22.3 12.4/23.9

Source: FleetMon.com. Accessed on 8 February 2022.

4.1 Voyage Report Data

Voyage report of a ship is a summary of the daily sailing situation submitted by the captain to the
onshore officers so that the onshore officers can understand the ship’s real sailing conditions. Usually,
the captain will report the data at noon every day, and thus voyage report data is also called noon report
data. Ship voyage reports are usually filled out manually by the crew based on the readings of the
instruments on board or eye inspection based on personal experience. Voyage report data includes many
sailing features of the ship, such as displacement, draft, trim, speed, true course, geographic location,
Greenwich Mean Time, the fuel consumptions of the main engine, auxiliary engines, and boilers,
weather conditions, and sea conditions.

Voyage report data of eight mega containerships shown in Table 1 is provided by a global container
shipping company. The sailing period recorded by the data spans from February 2014 to March 2016.
A data preprocessing procedure that removes invalid data entries was employed to ensure the quality of
datasets. Particularly, the data entries with N/A values, speeds below 12 knots or above 30 knots, sailing
time less than 10 hours, or ship status being not "sailing at sea" were all deleted in data preprocessing.
For the sailings of about two years, after preprocessing, ships S1 to S8 have 320, 296, 389, 380, 329,
402, 407 and 440 data entries, respectively, in their voyage reports.




Figure 1. llustration of wind/wave/sea current directions. Source: Meng et al. (2016b).

Motivated by the studies by Du et al. (2019), this study selects the fuel consumption rate of the
main engine (t/day) in the voyage report as the output variable (target) of the ship fuel efficiency model.
The input/independent variables (features) of the model includes displacement (MT) (equivalent to draft
(m)), trim (m), sailing speed (knots), sea water temperature (°C), wind direction, wind force (Beaufort
scale number), wave (swell) direction, wave (swell) height (m), sea current direction, and sea current
speed (knots). The directions of wind, waves, and sea currents in the voyage report are recorded by the
crew as fuzzy numbers denoting their approximate directions relative to the ship's heading, which are
illustrated in Figure 1. For readers who are interested in the distributions of our voyage report data
entries over these important features, see Figure 2 for ships S5 and S8 as examples.

(a) Distribution of displacement (b) Distribution of draft



(c) Distribution of trim (d) Distribution of sailing speed

o (f) Wind direction and wind force distribution of
(e) Distribution of seawater temperature S5

(g) Wind direction and wind force distribution of (h) Wave direction andfvSvaSlve height distribution
S8 0




(i) Wave direction and wave height distribution (j) Sea current direction and sea current speed

of S8 distribution of S5
(k) Sea current direction and sea current speed (1) Distribution of fuel consumption rate of the
distribution of S8 main engine

Figure 2. Distribution of the voyage report data entries of ships S5 and S8

4.2 Meteorological Data

The information of weather and sea conditions at the hands of a shipping company may not
complete or accurate. Therefore, our industry collaborators suggested us approaching some publicly
accessible meteorological data sources to retrieve more reliable data of weather and sea conditions. Our
research shows that European Centre for Medium-range Weather Forecasts (ECMWF) provides
the finest data for wind, waves, and sea water temperature in the granularity of 0.25° (longitude)A?0.25°
(latitude)A? A?1 hour (time), while Copernicus Marine Service (CMEMS, also a.k.a. “Copernicus”)
provides the finest data for sea currents in the granularity of 0.25° (longitude) A? 0.25° (latitude)A? A?
3 hour (time). These data sources are also adopted by Windy.com which is widely used by deck officers
in the world for manual voyage planning.

ECMWEF data on 12 variables/parameters are retrieved, including “Significant height of combined
wind waves and swell” (paramlId: 140229), “Mean wave direction” (paramld: 140230), “Mean wave
period” (paramld: 140232), “Sgnificant height of wind waves” (paramld: 140234), “Mean direction of



wind waves” (paramld: 140235), “Mean period of wind waves” (paramld: 140236), “Sgnificant height
of total swell” (paramlId: 140237), “Mean direction of total swell” (paramlId: 140238), “Mean period of
total swell” (paramld: 140239), “10 metre U wind component” (paramld: 165), “10 metre V wind
component” (paramld: 166), “Sea surface temperature” (paramld: 34). Note that waves consist of two
components: swell and wind waves, and ECMWF provide the information about swell, wind waves, and
the combined waves calculated from these two components. 3-hourly data on sea currents are retrieved
from CMEMS (Copernicus), involving two variables: eastward sea water_velocity and
northward_sea_water_velocity.

4.3 AlSData

With the financial support of IAMU, we purchased the AIS data of eight ships shown in Table 1
from MarineTraffic. The purchased AIS data has 15 columns. Apart from the identification and
particulars of the ship (MMS, Call Sign, Ship Name, Flag Country, Draft Designed, Length) and the
information about the voyage (ETA, Destination Port), the AIS data contains the detailed navigation
data including “Timestamp (UTC)”, “Navigation Status”, “Longitude Position”, “Latitude Position”,
“Ship Course”, “Ship Heading”, and “Sailing Speed”. There is a data entry every 3-5 minutes. “Sailing
Soeed” appears to be useful in our study. However, our study considers voyage report or sensor data as
the main data sources of ship fuel consumption. When voyage report data is used which records
information on a daily basis, “Sailing Speed” information in the time interval of 3-5 minutes from AIS
data does not help. When sensor data is used, it already contains the accurate information (every 15
minutes) of sailing speeds of the ship, and “Sailing Speed” information in AIS data will not provide
additional benefits.

4.4 Sensor Data

Sensor data of two mega containerships (ships S5 and S6 shown in Table 1) is provided by a global
container shipping company. The time span of the data ranges from May to November of 2015. One
sensor data entry was returned every 15 minutes, and the useful information for ship fuel efficiency
modeling includes “fuel consumption rate (MT/day, or kg/h)”, “Sailing speed”, “Draft”, “Trim”, “Wind
speed”, “Wind direction”. Ships S5 and S6 have 11,901 and 12,484 sensor data entries, respectively.
The sensor data from this global shipping company, consisting of 100 columns, does not contain the
information about waves, sea currents, and sea water temperature.

5. Machine Learning Models
5.1 Adopted Machine Learning Models

There are various ML methods in the field of data prediction and analysis. This study covers a large
range of the current most popular and practical methods, including tree-based methods, ANN, Support
Vector Machine (SVM), ridge regression (Ridge), and least absolute shrinkage and selection operator
regression (LASSO). Tree-based methods can be further divided into decision tree (DT), extremely
randomized trees (ETs), random forest (RF), AdaBoost (AB) (Freund and Schapire, 1995; Drucker,
1997), gradient tree boosting (GB) (Friedman, 2001), XGBoost (XG) (Chen and Guestrin, 2016), and
LightGBM (LB) (Ke et al., 2017).

Model training algorithms in our studies are implemented using Python 3.7.6. The XG model is
developed using the XGBoost 1.2.0 library, the LB model is developed using the LightGBM 2.3.1
library, and the remaining models are developed using the Scikit-learn 0.22.1.




5.1.1 Tree-based Methods

DT is a ML method for classification or regression (Breiman et al., 1984). The method creates a
tree-structured model to learn simple decision rules from the data features (variables) to predict the value
of a target variable. A DT model contains three types of nodes: root node (the topmost internal node),
internal nodes, and leaf nodes (also known as terminal nodes). In a DT model, each internal node
represents a judgment (test) of an attribute (i.e., values of a variable), and the judgment result is its
output. These outputs are represented by branches of the tree. The judgment and output process of
internal nodes is termed as splitting. In the regression algorithm, the splitting criterion of nodes is mean
square error (MSE). The splitting termination condition of nodes is determined by three parameters: the
tree’s maximum depth (max_depth), the minimum number of samples used in the decision of splitting
an internal node (min_samples_split), and the minimum number of samples contained in a leaf
(min_samples_leaf). The model overfitting issue can be alleviated by setting these three parameters.
Finally, each leaf node represents a classification/regression result. A simple DT structure is shown in

Figure. 3.

Figure 3. Visualization of DT structure.



(a) Bagging method. (b) Boosting method.

Figure 4. Ensemble strategies used in tree-based ML models. Source: KDnuggets (2017).

Ensemble methods are widely used in ML. The principle of ensemble methods is to combine the
prediction results of multiple base estimators (trees) constructed using a given learning method to obtain
better generalization ability/robustness than a single estimator. Bagging, also known as bootstrap
aggregating, is an ensemble strategy proposed by Breiman (1996) to improve unstable estimation or
classification scheme. ETs (Geurts et al., 2006) and RF (Breiman et al., 2001) are two ML models with
the bagging ensemble strategy. The key idea of the bagging strategy is to build multiple independent
estimators and then average their predictions, as illustrated in Figure 4(a). Boosting is an ensemble
strategy primarily used to reduce the model prediction bias of any given learning method. AB (Freund
and Schapire, 1995; Drucker, 1997), GB (Friedman, 2001), XG (Chen and Guestrin, 2016), and LB (Ke
et al., 2017) models adopt the boosting ensemble strategy. Both XG and LB are optimized gradient
boosting methods, which are highly efficient implementations of GB. In the boosting strategy, the base
estimator is built in sequence, as illustrated in Figure 4(b).

5.1.2 ANN




Figure 5. ANN model structure. Source: Du et al. (2019).

ANN is a widely used computing method composed of a large number of interconnected nodes
(neurons). The working mechanism of these nodes imitates that of neurons in the nervous system. ANN
usually distributes the neurons into three layers. The input layer receives input variables and passes the
variable values to the hidden layer. The neurons in the hidden layer make a weighted linear summation
of the output values from the previous layer, and then use a nonlinear activation function to transform
the weighted results and transfer them to the next layer. The output layer weights and transforms the
values from the last hidden layer to obtain the final output values. The working principle of the neurons
in the hidden and output layers can be expressed by the following formula:

y = f (W % +h) (1)

j=1
where Y, is the neuron output value; f() is the activation function; M is the number of neurons in

the previous layer; W is the network connection weight; X, is the output values of the previous layer;

b is the bias. The learning process of ANN is essentially the process of finding the best weight set

{V\{J } . The most commonly used weight learning method in ANN is the gradient descent method, which

continuously adjusts the weights of the network with a back-propagation algorithm to minimize the sum
of squared errors (Cai et al., 2019). Readers are referred to Haykin (2008) for the technical details of
ANN.

The structure of the ANN model established in existing studies related to ship fuel efficiency is
usually a three-layer network structure (i.e., only one hidden layer; Hornik et al., 1989; Kolmogorov,
1957), such as the models established by Pedersen and Larsen (2009), Besikgi et al. (2016), and Du et
al. (2019). Therefore, this study also adopts a typical feedforward ANN model with a three-layer
network structure (Figure 5). Inspired by Du et al. (2019) setting the number of neurons in the hidden



layer equal to the number of input variables, and considering that the input layer has eleven input
variables in this study, the number of neurons in the hidden layer is set to eleven. As described by Du et
al. (2019), too many neurons in the hidden layer usually result in serious overfitting problems. Pedersen
and Larsen (2009) also verified that eleven neurons in the hidden layer are sufficient with respect to fit
performance.

5.1.3 Support Vector Machine
SVM (Boser et al., 1992) is a ML method that is widely used in classification or regression tasks.
Its core idea is to use a mapping function ¢ to map the samples into a high-dimensional space, and then

find a hyperplane (function) for linearly segmenting the samples in the high-dimensional space. The
segmentation is to maximize the margin between the hyperplane and the samples. Since the mapping
function is often complicated and difficult to calculate, in practice, a kernel function is usually used to
perform the corresponding mapping calculation instead. The kernel function used in this study is the
most commonly used gaussian radial basis function, which performs well without prior knowledge about
the data. The SVM used for regression analysis is called support vector regression (SVR). In SVR, the
margin maximization problem can be transformed into an equivalent convex quadratic programming
problem (Equation 2). Since it is impossible to ensure that all samples are linearly separable, slack

variables &,, &, are introduced for each sample in the constraints to solve the linear inseparability
problem. At the same time, a penalty must be made for each slack variable introduced. The penalty
parameter C is used in the objective function to adjust the penalty intensity for slack variables. Solving
this problem returns the parameters of the hyperplane, including the normal vector W, the intercept b ,
and the slack variables &,, & . Therefore, the objective function solved by SVR can be expressed by
the following formula:
(1, n s
min_ {EW W C; (G +& )}

Ye—Wg(x)-b<z+&, 2)
StAWG(X)+b-y <e+&,

&, E020,e=1-n

where N is the number of samples; Y, is the actual target value; X, is the training variables vector; &

is the maximum deviation between the target function value and the actual target value. Readers are
referred to Smola and Scholkopf (2004) for the technical details of SVR.

5.1.4 Ridgeregression

Ridge regression (Hoerl and Kennard, 1970) is a biased estimation regression method, which is an
improvement of the ordinary least squares (OLS) method. The OLS method is an unbiased estimation

method, which fits a linear model with coefficients W to minimize the sum of squared residuals between

the actual target values in the sample data and the target values (estimated values) predicted by the linear
model. The objective function solved by the OLS method can be expressed by the following formula:

min {|w, - X Y[ 3)

where X is the covariates matrix; Y is the actual target vector.

When the number of variables used to construct a regression model is large and the sample size is
relatively small, the OLS method could easily lead to overfitting issues. In addition, the coefficient
estimates of the OLS method rely on the mutual independence of the covariates. When there is a
multicollinearity problem between the covariates, the covariates matrix will become close to singular,
which will make the OLS method highly sensitive to outliers of the observed target and produce a large




variance. To solve this problem, ridge regression adds a certain degree of bias to the regression estimate
to obtain a more reliable target prediction value (Equation 4). This approach of introducing bias is
called regularization. The degree of bias added in the ridge regression is adjusted using the penalty
parameter & in Equation 4:

. 2 2
min {[w, - X = Y[ + arJw |}

“4)

st w]; <t

where t > 0 is a pre-specified free parameter used to determine the amount of regularization, and
its relationship with & depends on the input data.

The penalty for the regression coefficients increases the bias of the regression model but reduces
the variance. The reduction in variance can usually compensate for the increase in bias, thereby
improving the overall prediction performance (Lepore et al., 2017). Readers are referred to Hoerl and
Kennard (1970) for the technical details of ridge regression.

5.1.5LASSO

The LASSO is a regression analysis method proposed by Tibshirani (1996). Both the interpretability
and prediction accuracy of the model can be strengthened in this approach because regularization and
variable selection are performed simultaneously. LASSO is conceptually very similar to Ridge, both of
them introduce a penalty for the regression coefficients. Ridge penalizes the sum of squared coefficients
(L2 penalty), while LASSO penalizes the sum of the coefficients’ absolute values (L1 penalty). The
objective function solved by LASSO can be expressed by the following formula:

min {w, - X =Y +a|w |
° (5)
st w| <t
The biggest difference between the L1 penalty and the L2 penalty is that the L1 penalty both
regularizes the function and eliminates the features that do not have sufficient impacts on the target
(Coraddu et al., 2017). With high values of &, the regression coefficients of variables with low
correlation with the output target (or variables with multicollinearity with other variables) will be exactly
zeroed, thus achieving variable selection in LASSO. However, the coefficients of these variables in
Ridge can only be close to zero.

5.2 Data Normalization

Different ML methods have different requirements for data preprocessing. The main difference is
whether to use data normalization. To clarify the impact of data normalization on the performances of
ML models, the performances (R?) of ML models before and after data normalization were compared
in a preliminary study. This preliminary study reveals that the performances of SVM and ANN models
after data normalization are significantly better than those before normalization, while other models do
not see a significant difference. See Figure 6. Therefore, our studies use data normalization for SVM
and ANN but not for other models.
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Figure 6. The impact of data normalization on model performance of ship S5 over a dataset
adopted in a preliminary study

5.3 Hyperparameter optimization

In ML, some parameters’ values need to be set prior to the learning process because they determine
the structure of a ML model. These parameters are termed as hyperparameters. To maximize the
performance of ML models, in the implementation of the above eleven ML methods, it is necessary to
adjust the corresponding hyperparameters according to the training dataset. Table 2 lists the
hyperparameters that need to be optimized for the eleven ML models. When experimenting with
optimization approaches for hyperparameter optimization, the Bayesian Optimization (BO) method was
identified as the best. In a preliminary study, we further experimented with the BO based on tree-
structured Parzen Estimators of hyperopt 0.2.2 library (Hyperopt) (Bergstra et al., 2013), the BO based
on extra trees regressor of scikit-optimize 0.7.4 library (Skopt), and the multi-step grid search method
of scikit-learn 0.22.1 library (Msgs). Showing superior accuracy and least time consumption, Hyperopt
was finally selected as the method to optimize model hyperparameters. See Figure 7.

Table 2. Model hyperparameters to be optimized

Package

Model Hyperparameters Package/Library reference

max_depth [2, 30], min_samples leaf [ 1, 20], scikit-learn scikit-learn,

DT min_samples_split [2, 20], max_features[1, 15] 2020

A



ETs

RF

AB

GB

XG

LB

SVM

ANN

Ridge

LASSO

max_depth , min_samples |eaf ,

min_samples_split , max_features ,
n_estimators
max_depth , min_samples |eaf ,
min_samples_split , max_features ,
n_estimators
max_depth , min_samples |eaf ,
min_samples_split , max_features ,
n_estimators , learning_rate
max_depth , min_samples |eaf ,
min_samples_split , max_features ,
n_estimators , learning_rate ,
subsample
max_depth , h_estimators ,
learning_rate , min_child_weight
, gamma , colsample_bytree ,
subsample , reg_alpha , reg_lambda
max_depth , _estimators ,
learning_rate , min_child_weight
, min_child_samples , colsample_bytree
, subsample , reg_alpha ,
reg_lambda , hum_|eaves ,

min_split_gain

C , gamma
Activation ,
solver , alpha ,
learning_rate init ,beta 1 ,
beta 2
alpha
alpha

scikit-learn

scikit-learn

scikit-learn

scikit-learn

XGBoost

LightGBM

scikit-learn

scikit-learn

scikit-learn

scikit-learn

scikit-learn,
2020

scikit-learn,
2020

scikit-learn,
2020

scikit-learn,
2020

XGBoost, 2020

LightGBM,
2020

scikit-learn,
2020

scikit-learn,
2020

scikit-learn,
2020

scikit-learn,
2020

Note: The brackets after the hyperparameter names list the value ranges of the hyperparameters.
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(a) R? (accuracy) comparison of hyperparameter optimization methods

(b) Time consumption comparison of hyperparameter optimization methods
Figure 7. Comparison of three hyperparameter optimization methods for ship S8, over a dataset
adopted in a preliminary study

5.4 Performance Metrics




Performance metrics that gauge the fit performances of ML models are defined in the following
over the training set. The R? value over the test set, referred to as R® (test), is used to measure the
generalization performance of a ML model.

D -y
R=1-5—— (6)
20—y
t=1
1 k " 2
MSE:gZ(yt -Y,) (7)
t=1
[1& A
RMSE = EZ(yt—yt)z (8)
1 & A
MAE=EZyt—yt )
t=1
() k _A
MAPE = 100% <~ | ¥ = ¥ (10)
t=1 Vi

where Y, is the target value - actual ship fuel consumption rate (t/day); Y, is the predicted output value

- predicted ship fuel consumption (t/day); § is the average of target values - average of actual ship fuel
consumption rate (t/day); k is the number of samples in the data set; p is the number of input variables
of the model.

6. Fusion Solution 1 (DFS1): Voyage Report Data + Meteorological Data

6.1 Rationale of Fusing Voyage Report Data and Meteorological Data

Yan et al. (2021) point out that weather and sea conditions recorded by voyage report are snapshot
information by the deck officer. For instance, the wind speed/force and direction in a voyage report data
entry are from the deck officer’s one read of their anemometer, and the time of the deck officer’s reading
the anemometer can be random on the given day. Apart from the snapshotting method, our conversation
with industry collaborators show that wave and sea current conditions recorded in voyage report depend
highly on the deck officer’s eye inspection and personal experience. These issues could all erode the
data quality of voyage report on weather and sea conditions. To remedy the data quality issue of voyage
report on weather and sea conditions, our industry collaborators suggested us approaching some publicly
accessible meteorological data sources to retrieve more reliable data of weather and sea conditions. As
discussed in Section 4.2, this project utilizes the meteorological data from ECMWF and CMEMS
(“Copernicus”).

6.2 Approach to Fusing Voyage Report Data and Meteorological Data

The first key step of fusing voyage report data and meteorological data is to estimate the sailing
trajectory (hourly geographical positions) of the ship in a day. This estimation can be performed with



the famous great circle route. In the actual voyage of a ship, the great circle route is the shortest economic
route in terms of distance. However, following the great circle route often requires the deck team to
constantly change the course of the ship. Therefore, to facilitate navigation, the great circle route is
usually divided into several segments and then the ship sails along the rhumb line (or loxodrome) on
each segment (Weintrit and Kopacz, 2011). Based on this, the latitude and longitude of each position
the ship passes are calculated according to the rhumb line formulas (Bennett, 1996) shown below:

S=V-h (11)
Ap=S-cosC (12)
P, = +Ap (13)

+
n=Pt (14)
Al:8~sin6-sec¢m (15)
=4 +AL (16)
t,=t +h (17)

In these formulas, S is the sailing distance (n mile); V is the sailing speed (knots); h is the sailing

time (hour); A@ is the latitude difference (°); C is the ship’s course (°), which should be converted to
the range of 0° - 90°, from north and south (e.g., courses 150° and 300° should be converted to 30° and
60° respectively.); ¢ and ¢, are the latitudes of the departure and arrival positions, respectively (°);

@, is the average latitude between them (°); 4, and A, are the longitudes of the departure and arrival

positions, respectively (°); A4 is the longitude difference (°); t, and t, are the times of departure and
arrival, respectively.

Second, the weather and sea conditions at each hourly position can be retrieved from ECMWF data
on 12 variables and CMEMS (Copernicus) data on 2 variables. The wind/waves/sea currents direction
obtained from meteorological data is the absolute direction. To obtain the directional information of
wind/waves/sea currents relative to the bow of the ship, the “true course” information from the voyage
report is used. Due to the symmetric structure of the ship, the relative wind/wave direction is between
0° and 180°. 0° represents the wind/waves/sea currents coming to the bow, and 180° represents the
wind/waves/sea currents coming to the stern.

Due to the nature of voyage report data, it usually contains only one data entry per day. For a specific
day (corresponding to a specific data entry of voyage report), meteorological data are used for the
purpose of correcting the possibly inaccurate information of weather and sea conditions contained in
this voyage report data entry. Therefore, it is necessary to average the weather/sea conditions along
hourly geographical positions travelled through by the ship, and to use this daily average as the substitute
for weather/sea condition information in this data entry corresponding to this specific day. The average
method used is as follows:

<

— 1
W_Mi W (18)

where W is the daily average weather/sea condition data; M =24 is the number of hourly weather/sea

condition data entries per day; W is the hourly weather/sea condition data. Note that the averaging
method is widely adopted by meteorological services such as ECMWF to conduct data conversions
between different granularities of longitude A? latitude A? time.




Figure 8. Approach of fusing voyage report data and meteorological data

The whole process of fusing voyage report data and meteorological data is illustrated in Figure 8.
Until now, all the information derived from meteorological data about weather and sea conditions are
in the form the precise values. Specifically, the relative directions of wind/waves/sea currents are
represented as the degrees relevant to the ship’s bow, and wind speed is in the unit of m/s. However,
voyage reports use fuzzy values for these data. For the convenience of comparison experiments between
precise values and fuzzy values, Tables 3 and 4 can convert precise values of weather and sea conditions
to fuzzy values.

We generate nine possible datasets using voyage report data and meteorological data, by
considering the target application scenarios in energy-efficient operational measures for voyage
management, the endogeneity issue discussed by Yan et al. (2021), the fact that waves consist of swells
and wind waves, and the experimental choice of using precise or fuzzy values for weather and sea
conditions. See Table 5 for the details of these nine datasets.

Table 3. Conversion of relative wind/wave/sea current direction data from precise values to
fuzzy values

Relative wind/wave direction angle (precise value) Approximate wind/wave direction (fuzzy value)

0°~30° E
300~ 60° D/F
60° ~ 120° C/G
120° ~ 150° B/H
150° ~ 180° A




Table 4. Wind force scale corresponding to different wind speeds (ISO 15016: 2015(E)).

Wind speed (m/s) — precise value Wind force (Beaufort scale) — fuzzy value
0.0~0.2
03~15
1.6~33
34~54
55~179
8.0~10.7

10.8 ~13.8
139~17.1
17.2 ~20.7
20.8 ~24.4
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6.3 Experimental Results and Discussion
6.3.1 Performance of Eleven ML Models over Nine Datasets and Selection of the Best
Datasets

To evaluate the model performance as comprehensively as possible, each of nine datasets of each
ship (for instance, Setl of ship S1) is randomly divided into two subsets, where the training set contains
80% of the data entries, and the test set contains 20% of the data entries. The training set is used for
model hyperparameter optimization and model fitting, and the test set is used to assess the generalization
performance of the model. On the training set, Hyperopt, a Bayesian optimization method, is used to
optimize model hyperparameters, and the optimization objective is to maximize the R? value of five-fold
cross-validation.

To obtain statistical comparison results and ensure the robustness of the comparison results, the
random split of each dataset of each ship (for instance, Setl of ship S1) into a training set and a test set
is conducted 20 times. For instance, Setl of ship S1 has 20 different splits of training set and test set.
For each random split, the hyperparameters of the ML model under investigation are re-optimized and
a model with the best hyperparameter values is trained. Therefore, 20 random splits of a dataset
necessitate 20 runs of hyperparameter optimization and model training, resulting in 20 trained models
(the same type of ML model with different hyperparameter values). The average performance of the 20
runs (trained models) is taken as the final result for model evaluation to eliminate the impact of
disturbance caused by randomness in dataset division/split. The values of performance metrics of eleven
ML models over nine datasets for ship S1 are tabulated in Table 6. As stated above, the figure in each
cell of Table 6 is the average result of 20 runs corresponding to 20 random splits of the dataset. For
instance, R? of the model DT over the dataset Setl, 0.846, is the average of 20 R? values corresponding
to 20 runs of the DT model over Setl. The fourth column of Table 6 (labelled as “R? (test)”) is the R?
values on the test set. The results for ships S2 to S8 can be found in Tables Al to A7 in Appendices.

One may have been aware that performance of ML models and quality of datasets are interwoven
together and the job of selecting the best datasets from the results of eleven ML models, nine datasets,
and eight ships (shown in Table 6 and Tables Al to A7) is overwhelming, not to mention the possible
contrasts of R? values over the training set versus the test set. To overcome this, we develop a voting
scheme to select the best datasets. In this scheme, every ML model is a voter and votes for the best
datasets, by considering R* (with two decimal places) as the first priority and R (test) (with two decimal
places) as the secondary performance metric. For instance, in Table 6 for ship S1, the DT model finds
the best R value with two decimal places is 0.85 which is achieved over datasets Set1, Set3precise, Set3nzy,
and Setdprecise. Over these four datasets, it finds the best R? (test) with two decimal places is 0.64 which
is achieved over Setl. Therefore, the DT model of ship S1 votes for Setl as the best dataset. Similarly,
we allow other ML models to vote for their best datasets and apply this voting scheme to all the eight
ships. Voting results are shown in Table 7. The number of votes received by each of nine datasets under
investigation is shown in Figure 9.

Figure 9 is the Tally sheet that counts the votes received by each dataset: Figure 9(a) consider all
models as voters; Figure 9(b) does not consider DT, SVM, ANN, Ridge, and LASSO as voters because
their fit performances are significantly worse than ET, RF, AB, GB, XG and LB and thus will not be
preferred by industry applications; Figure 9(c) further removes RF and LB from the voter list because
they are “dominated” by ET, AB, GB, and XG against both R? and R? (test). For instance, in Table 7,
RF is dominated by ET because neither of R? and R? (test) of the RF model is better than the ET model.

It can be seen from Figure 9 that Set3precise and Setl receive the largest numbers of votes from best
models. Set3yrecise receives 34 votes from all models, 17 votes from ET, RF, AB, GB, XG, and LB, and
13 votes from ET, AB, GB and XG. Setl receives 24 votes from all models, 18 votes from ET, RF, AB,




GB, XG, and LB, and 10 votes from ET, AB, GB and XG. Therefore, it will be wise to choose Set3preise
and Setl as the best datasets: Set3preise 1S the best; but the quality of the voyage report data Setl is also
quite high. The advantage of Set3precise Over Setl reveals the benefits of fusing/combining voyage report
data and meteorological data.

Table 6. The fit performance of eleven machine learning models for ship S1 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[as}g (lt\%:?) M(OA/SE
Setl 0.846 0.643 81.022 8.934 6.851 7.995
Set2predise 0.828 0.640 82.878 9.051 6.940 8.279
Set2fuzy 0.836 0.642 78.921 8.821 6.792 8.085
Set3precise 0.847 0.617 73.848 8.532 6.522 7.697

DT Set3huzy 0.848 0.627 73.402 8.479 6.495 7.662
Setdprecise 0.853 0.613 71.091 8.348 6.369 7.558
Setliuzy 0.838 0.628 77.915 8.728 6.692 7.953
SetSprecise 0.834 0.628 80.418 8.896 6.781 8.033
Setbhuzy 0.828 0.640 82.894 9.035 6.922 8.213
Setl 0.992 0.781 4.001 1.525 1.090 1.255
St 2precise 0.931 0.762 33.569 5.674 4.330 5.239
Set2fuzy 0.934 0.757 32.173 5.444 4.137 4.981
Set3precise 0.965 0.762 17.043 3.524 2.699 3.245
ET Set3huzy 0.939 0.766 29.313 5.012 3.862 4.698
Setdprecise 0.956 0.764 20.951 3.918 2.993 3.612
Setliuzy 0.950 0.759 24.199 4.495 3.471 4.198
SetSpredise 0.947 0.769 25.433 4.623 3.520 4.237
SetSnuzy 0.943 0.764 27.454 4.842 3.693 4.442
Setl 0.964 0.761 18.837 4321 3.194 3.721
Set2precise 0.940 0.754 28.914 5.304 3.978 4.747
Set2yzy 0.944 0.764 27.225 5.174 3.867 4.607
Set3precise 0.936 0.756 30.736 5.506 4.112 4911
RF SetShuzy 0.941 0.765 28.610 5.310 3.965 4.721
Setdprecise 0.942 0.758 27.841 5.210 3.875 4.612
Setliuzy 0.935 0.763 31.277 5.535 4.138 4.929
SetSpredise 0.940 0.760 29.131 5.331 3.971 4.713
SetSnuzy 0.938 0.765 30.079 5418 4.035 4.804
Setl 0.955 0.758 23.482 4.687 4.036 4.940
Set2precise 0.931 0.753 33.603 5.671 4.810 5.910
Set2nuzy 0.942 0.756 28.226 5.008 4.124 5.025
Set3predise 0.938 0.752 29.988 5.180 4.370 5.371
AB SetShuzy 0.926 0.752 36.202 5.814 4.843 5.928
Setdprecise 0.942 0.749 28.430 5.117 4.333 5.324
Setliuzy 0.940 0.753 29.483 5.111 4.246 5.189
SetSprecise 0.953 0.759 22.810 4.475 3.728 4.565
SetSnuzy 0.952 0.763 23.416 4.491 3.657 4.450
Sl 0.987 0.764 6.570 2.238 1.633 1.893
Set2precise 0.942 0.725 27.933 4.962 3.778 4.485
Set2uzy 0.943 0.750 27.623 5.067 3.856 4.569
Set3predise 0.962 0.743 18.367 3.776 2.825 3.330
GB SetShuzy 0.963 0.753 18.109 3.775 2.839 3.361
Setdprecise 0.951 0.730 23.216 4.268 3.205 3.816
Setduzy 0.960 0.743 19.340 4.084 3.115 3.716
SetSprecise 0.946 0.741 26.335 4.731 3.567 4.221
SetSnuzy 0.953 0.761 22.634 4.487 3.474 4.054




Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.995 0.771 2.805 1.392 1.008 1.168
Set2precise 0.959 0.740 19.763 4.102 3.055 3.544
Set2nuzy 0.958 0.742 20.247 3.983 3.016 3.505
Set3precise 0.953 0.734 22.403 4.236 3.177 3.695

XG St 3y 0.947 0.747 25.851 4.557 3.419 3.985
Setlprecise 0.956 0.734 21.189 3.938 2.921 3.407
Setdtuzy 0.947 0.742 25.472 4.665 3.576 4.195
SetSprecise 0.950 0.743 24.275 4.412 3.404 3.978
SetSruzy 0.944 0.756 26.767 4.732 3.619 4.196
Setl 0.989 0.755 5.857 2.183 1.652 1.924
Set2precise 0.942 0.722 28.076 4.938 3.764 4.463
Set2nuzy 0.927 0.732 34.990 5.685 4.376 5.161
Set3precise 0.943 0.723 27.467 4.806 3.609 4.272
LB SEt3tuzy 0.945 0.728 26.553 4.756 3.628 4.271
Setlprecise 0.937 0.723 30.701 5.313 4.035 4.803
Setdiuzy 0.940 0.720 28.687 5.168 3.921 4.654
SetSprecise 0.937 0.738 30.654 5.365 3.983 4.713
SetSnuzy 0.931 0.741 33.492 5.687 4.279 5.080
Setl 0.861 0.784 73.082 8.540 6.365 7.156
Set2precise 0.861 0.792 66.834 8.149 6.039 6.934
St2zy 0.858 0.779 68.637 8.253 6.125 7.051
Set3precise 0.858 0.786 68.382 8.263 6.143 7.059

SVM Set3uzy 0.854 0.782 70.155 8.367 6.227 7.172
Setlprecise 0.859 0.789 68.027 8.237 6.119 7.043
Setdiuzy 0.854 0.779 70.517 8.384 6.239 7.201
SetSprecise 0.859 0.795 68.012 8.240 6.139 7.042
SetSnuzy 0.857 0.791 68.653 8.279 6.145 7.050
Setl 0.869 0.781 68.911 8.290 6.391 7.296
Set2precise 0.829 0.744 83.006 8.767 6.810 8.060
Set2iuzy 0.855 0.772 70.144 8.315 6.429 7.503
Set3precise 0.854 0.778 70.184 8.366 6.437 7.518

ANN Set3hzy 0.846 0.780 73.937 8.593 6.608 7.710
Setdprecise 0.832 0.751 80.837 8.611 6.638 7.968
Setdtuzy 0.868 0.768 64.080 7.921 6.128 7.159
SetSprecise 0.857 0.777 68.894 8.256 6.373 7.439
SetSnuzy 0.826 0.755 83.604 8.970 6.959 8.300
Setl 0.814 0.774 97.422 9.868 7.725 8.932
Set2precise 0.825 0.782 84.128 9.170 7.087 8.291
Set2huzy 0.824 0.778 84.830 9.208 7.104 8.321
Set3predise 0.830 0.784 81.939 9.050 6.993 8.192

Ridge Set3ruzy 0.829 0.784 82.300 9.070 6.989 8.183
Setdprecise 0.827 0.782 83.165 9.117 7.029 8.213
Setdtuzy 0.826 0.779 83.945 9.160 7.068 8.272
SetSprecise 0.827 0.785 83.282 9.124 7.022 8.215
SetSnuzy 0.827 0.784 83.482 9.135 7.014 8.202
Setl 0.814 0.773 97.552 9.875 7.711 8.917
Set2precise 0.825 0.781 84.185 9.173 7.100 8.309
Set2nuzy 0.823 0.777 85.087 9.222 7.120 8.339

LASSO | Sot3precise 0.829 0.786 82.204 9.064 6.997 8.191
Set3nuzy 0.828 0.785 82.832 9.099 7.002 8.184
Setlprecise 0.827 0.785 83.345 9.127 7.044 8.235




Model Dataset R? R? (test) MSE E%I:}g (lt\;[cﬁs) M(OA/OI))E
Setdhuzy 0.825 0.779 84.165 9.172 7.079 8.289
SetSprecise 0.827 0.784 83.329 9.126 7.040 8.242
SetSnuzy 0.826 0.783 83.567 9.139 7.031 8.226

Table 7. DFS1. Best performance of each machine learning model from nine datasets and the
datasets that achieve the best performance. R? (with two decimal places) is considered as the
first priority, and R? (test) (with two decimal places) is the secondary performance metric.

Ship | Model | BestR? | Best R*(test) | Datasets

S1 DT 0.85 0.64 Sl
ET 0.99 0.78 Setl
RF 0.96 0.76 Sl
AB 0.96 0.76 Setl
GB 0.99 0.76 Sl
XG 1.00 0.77 Setl
LB 0.99 0.76 Setl
SVM 0.86 0.80 SetSprecise
ANN 0.87 0.78 Setl
Rldge 0.83 0.79 %tSprecise
LASSO |0.83 0.79 St 3precise, et 3ruzzy, Setdprecise,
S2 DT 0.87 0.61 Set 2y
ET 0.98 0.76 Sat‘]'precise,
RF 0.96 0.77 Sl
AB 0.98 0.74 SGt4precise,
GB 0.99 0.76 Set3precise, Set3fuzzy, Sa4precise, Sa4fuzzy
XG 0.99 0.77 Set3precise
LB 0.98 0.75 Set3precise
SVM 0.87 0.81 %threcise, w“'precise, $t4fuzzy
ANN 0.91 0.80 St 2 ecise, Setlprecise, etSprecise
Rldge 0.83 0.80 Setgprecise, $t4precise
Setzprecise, $t3precise, Setgfuzzy, 3914precise, $t4fuzzy,
LASSO | 0.82 0.80 S5 recice, Sty
ET 0.99 0.82 SetBprecise, Ft3tuzy, SEtbnzy
RF 0.96 0.81 Set2precise, SEtSprecise, SetSruzy,
AB 1.00 0.81 %t‘l'precise
GB 0.98 0.82 Set5precise
XG 0.96 0.81 &tSprecise, $t3fuzzy
LB 0.96 0.81 SetSprecise
SVM 0.85 0.82 Set3uzy
ANN 0.87 0.81 Set2precise, SetSprecise
Ridge 0.80 0.80 Set3precise, Set3ruzzy, Setdprecise, SEtdhuzzy, SetSprecise
LASSO |0.80 0.80 St 3precise, Set3ruzzy, Setdprecise, Etdhuzzy, SetSprecise
S4 DT 0.93 0.77 Stdtuzy
ET 1.00 0.88 SetSprecise
RF 098 086 %threcise, $t4fuzzy, %tSprecise, %tSfuzzy
AB 0.99 0.87 $3precise, %t:gfuzzy
GB &3I3precise, $t3fuzzy, w"'precise, $4fuzzy, wsprecise,
0.99 0.87 SetShuzy
XG 1.00 0.87 $3precise
IAMU




Ship | Model Best R?> | Best R (test) | Datasets
LB 0.99 0.87 %tSprecise, $t5fuzzy
SVM 092 086 %tgprecise, $t4preci5e, &tSprecise, $t5fuzzy
ANN 0.95 0.86 %tgprecise, $t3fuzzy
Ridge 0.83 0.82 Sl
LASSO 0.83 0.81 §3precise, 33t3fuzzy, 85t4precise, Set4'fuzzy, $t5precise,
5fuzzy
S5 DT 0.95 0.8 SEt3nuzy
ET 1.00 0.90 Setl
RF 0.98 0.88 Setl, Set2tuzy, Set3uzy, Setdiuzy, SetSprecise, SetSnuzy
AB 1.00 0.89 &3I3precise, $t4fuzzy, wsprecise, wsfuzzy
GB 1.00 0.89 Set2precise, Setprecise, Setdtuzzy, SetSprecise
XG 0.99 0.89 Setl, SetShzy, SetSuzy
LB 0.99 0.88 Setl, SetShuzy, SetSuzy
SVM 0.93 0.88 Sl
ANN 0.94 0.88 St 2precise, Set3precise, etdprecise
Ridge | 0.89 0.88 SetSruzy
LASSO |0.89 0.87 Setprecise, SEt3tuzzy, Setprecise, Fttuzzy, SEtSprecise
S6 DT 0.85 0.53 Setdprecise
ET 0.99 0.77 Setl
RF 0.96 0.77 Setl
AB 0.98 0.76 Set3precise
GB 0.97 0.79 Setl
XG 0.97 0.79 Setl
LB 096 075 %tSprecise, %tSprecige, %tsmzzy
ANN 0.88 0.76 SEtSpredise,
Rldge 0.78 0.75 Set3precise
LASSO |0.77 0.75 Set3nuzy
S7 DT 0.88 0.69 SetSprecise,
ET 0.99 0.81 Set3precise
RF 0.97 0.80 $5precise, $t5fuzzy
AB 0.99 0.78 Setliuzy, SetSuzy
GB 0.99 0.79 Set3precise
XG 0.99 0.78 $3precise
LB 098 079 %t\?)precise, S€t5fuzzy
SVM 0.91 0.79 Setl
ANN 0.90 0.77 Set2precise, Etdprecise,
. Setzprecise, $t2fuzzy, Setgprecise, Set3fuzzy, %4precise,
Ridge 0.82 0.76 Setdiuzy, SetBpredise, S5tz
Satzprecise, 33t2fuzzy, 85t3precise, Setsfuzzy, $t4precise,
LASSO | 0.82 0.76 SetAuzy, SetBorecice, SEtBruzzy
S8 DT 0.92 0.77 Setl, Set3precise
ET 1.00 0.88 %tl, wsprecise, %‘:Sprecise, $t5fuzzy
RF 0.98 0.86 Setl, 35t3precise, $5precise, $t5fuzzy
AB 1.00 0.87 SetShuzy
GB 1.00 0.86 Set3huzy
XG 1.00 0.85 Set3huzy
LB 0.98 0.87 Sl
SVM 091 0.87 Set3precise, Setprecise, SetBprecise
ANN 0.92 0.86 %t?)precise, &M-precise, $t5precise
Ridge 0.88 0.86 SetSprecise
LASSO 0.88 0.85 %tsprecise, $t4precise, $t5precise




(a) Best dataset counts (voted by all models)

(b) Best dataset counts (voted by ET, RF, AB, GB, XG and LB)

(c) Best dataset counts (voted by ET, AB, GB, and XG)

Figure 9. Best datasets voted by machine learning models



6.3.2 Performance Comparison of ML models

One may have found the performance differences of 11 ML models from Table 7. To further
articulate the performance of these ML models over all the performance metrics, Table 8 is presented
for the ML models over the best dataset Set3precise-

Tables 7 and 8 both confirm that ET, RF, AB, GB, XG and LB are good candidate models that can
be adopted by the shipping industry: their R? values over the best datasets are all above 0.96 and even
reach the level of 0.99 to 1.00, while their R? performance over test data is in the range from 0.74 to
0.90. The remaining models, including DT, SVM, ANN, Ridge, and LASSO, are not recommended for
industry applications because their R* values are usually below 0.90, while the values of performance
metric R? over test data are not better or even worse than ET, RF, AB, GB, XG and LB.

Further, the fit performance of RF and LB are usually slightly dominated by ET, AB, GB, and XG,
against both R? and R? (test), which makes it safe for industry specialists to only install ET, AB, GB and
XG into their machine learning model arsenal for ship energy efficiency modeling. Their fit errors on
daily bunker fuel consumption, measured by RMSE and MAE, are usually between 0.5 to 4.0 ton/day,
though fit errors might be over 4.0 ton/day occasionally if datasets are not carefully chosen.

The experimental results reported in Tables 7 and 8 also rank the performances of eleven machine
learning models into four different tiers. The performances of the models in the same tier are quite close,
while those of the models in different tiers are significantly different.

e Tier 1: ET, AB, GB, XG, and LB;
e Tier 2: RF;

e Tier 3: DT, SVM, ANN; and

e Tier 4: Ridge, LASSO.

Table 8. The performance of eleven machine learning models over dataset Set3, ecise (DFS1)

4 R R RMSE | MAE | MAPE

Ship | Model R R (test) MSE (t/day) (t/day) (%)
DT 0.847 0.617 73.848 8.532 6.522 7.697
ET 0.965 0.762 17.043 3.524 2.699 3.245

RF 0.936 0.756 30.736 5.506 4.112 4911
AB 0.938 0.752 29.988 5.180 4.370 5.371

GB 0.962 0.743 18.367 3.776 2.825 3.330

S1 XG 0.953 0.734 22.403 4.236 3.177 3.695
LB 0.943 0.723 27.467 4.806 3.609 4.272

SVM 0.858 0.786 68.382 8.263 6.143 7.059

ANN 0.854 0.778 70.184 8.366 6.437 7.518

Ridge 0.830 0.784 81.939 9.050 6.993 8.192
LASSO | 0.829 0.786 82.204 9.064 6.997 8.191

I [ DT 0.820 0.589 112.089 10.461 7.916 9.230
ET 0.974 0.765 15.842 3.377 2.445 2.780

RF 0.950 0.740 31.494 5.541 4.007 4.662

AB 0.961 0.743 24.755 4.778 4.073 4.729

S2 GB 0.992 0.760 5.008 1.817 1.234 1.378
XG 0.991 0.765 5.421 1.949 1.186 1.277

LB 0.980 0.748 12.589 3.053 2.179 2.442

SVM 0.864 0.812 84.860 9.176 6.608 7.210

ANN 0.908 0.791 56.693 7.365 5.581 6.171
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Ship | Model | R R%(test) | MSE ﬁ%jﬁ (1:%25) M({;SE
Ridze | 0826 | 0802 | 108847 | 10429 | 8011 | 9.055
LASSO | 0824 | 0796 | 110162 | 10492 | 8.034 | 9.042

| [ DT | 0865 | 0684 | 98572 | 9.705 | 7.042 | 8343
ET | 0985 | 0821 | 10758 | 2846 | 1716 | 218l
RF | 0956 | 0802 | 31781 | 5576 | 3587 | 4463
AB | 0991 | 0812 6328 | 2183 | 1712 | 1998
GB | 0964 | 0819 | 26559 | 4694 | 2836 | 3.642

$3 T xG | 0961 | 0810 | 28714 | 5030 | 3.052 | 3828
IB | 0947 | 0804 | 38795 | 5845 | 3853 | 4853
SVM | 0844 | 0820 | 113.000 | 10591 | 6627 | 8.167
ANN | 0874 | 0798 | 91.583 | 9475 | 6480 | 7.09
Ridge | 0801 | 0796 | 144061 | 11987 | 8329 | 10.615
LASSO | 0799 | 0796 | 145425 | 12.043 | 8323 | 10.619

| [ DT | 0916 | 0746 | 63063 | 8094 | 6036 | 6523
ET | 0998 | 0872 1434 | 0901 | 0627 | 0687
RF | 0975 | 0853 | 20349 | 4497 | 3331 | 36I8
AB | 0986 | 0865 | 11.021 | 3.144 | 2591 | 2.905
GB | 0989 | 0866 8845 | 2500 | 1838 | 1957

sS4 T XG | 0995 | 0869 3758 | 1.585 | 1.140 | 1201
LB | 0987 | 0855 | 10943 | 2871 | 2200 | 2340
SVM | 0921 | 0857 | 63718 | 7972 | 5848 | 6.146
ANN | 0947 | 0856 | 42555 | 6513 | 5034 | 5502
Ridge | 0833 | 0811 | 135334 | 11.629 | 9.033 | 9.406
LASSO | 0832 | 0809 | 135961 | 11.656 | 9.053 | 9417

| [ DT | 0947 | 0785 | 29488 | 5182 | 3764 | 5625
ET | 0997 | 0892 1413 | 0854 | 0619 | 0935
RF | 0981 | 0874 | 10498 | 3225 | 2390 | 3.663
AB | 0995 | 0886 2543 | 1525 | 1200 | 2217
GB | 0993 | 0887 3519 | 1359 | 1021 | 1.610

ss T XG_| 0993 | 0878 3601 | 1605 | 1133 | 1.749
B | 0987 | 0873 7382 | 2350 | 1758 | 2.725
SVM | 0916 | 0873 | 46421 | 6785 | 4917 | 7472
ANN | 0935 | 0879 | 36157 | 595 | 4544 | 7075
Ridze | 0889 | 0868 | 61610 | 7846 | 5934 | 9.109
LASSO | 0888 | 0868 | 61988 | 7.870 | 5953 | 9.129

| [ DT | 0832 | 0576 | 69684 | 8275 | 6119 | 8.113
ET | 0979 | 0752 8706 | 2743 | 2010 | 2.678
RF | 0953 | 0740 | 19498 | 4382 | 3173 | 421
AB | 0980 | 0755 8175 | 2647 | 2186 | 3210
GB | 0971 | 0770 | 11917 | 3.011 | 2384 | 3226

S6  XG_ | 0959 | 0771 | 17299 | 3835 | 2890 | 3902
LB | 0963 | 0754 | 15520 | 3514 | 2682 | 3.646
SVM | 0843 | 0767 | 65.144 | 8045 | 5755 | 7.629
ANN | 0859 | 0772 | 58184 | 7599 | 5.750 | 7.603
Ridge | 0775 | 0745 | 93218 | 9652 | 7454 | 9.977
LASSO | 0774 | 0744 | 93502 | 9.667 | 7443 | 9.960

| [ DT | 0880 | 0683 | 48319 | 6903 | 5173 | 6.749

$7 BT | 0987 | 0.805 5176 | 1848 | 1259 | 1.639
RF | 0961 | 0794 | 15501 | 3920 | 2867 | 3.740
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Ship | Model | R R%(test) | MSE ﬁi\fﬁ (1:%25) M&I;E
AB 0.982 0.777 7.272 2.415 1.888 2.558
GB 0.986 0.785 5.466 2.156 1.442 1.880
XG 0.986 0.784 5.731 2.093 1.424 1.808
LB 0.982 0.785 7.152 2.366 1.742 2.283
SVM 0.871 0.748 51.533 7.113 5.173 6.591
ANN 0.892 0.771 43.321 6.515 5.071 6.587
Ridge 0.820 0.758 72.381 8.498 6.520 8.315
LASSO | 0.819 0.758 72.827 8.524 6.550 8.374
| [ DT 0.916 0.769 50.649 6.985 4.922 5.949
ET 0.995 0.876 2.783 1.404 0.907 1.120
RF 0.976 0.855 14.566 3.798 2.624 3.187
AB 0.991 0.863 5.365 2.114 1.693 2.148
GB 0.985 0.860 9.102 2.427 1.670 2.075
S8 XG 0.979 0.856 12.821 2.974 2.114 2.589
LB 0.976 0.852 14.749 3.261 2.338 2.882
SVM 0.910 0.869 54.154 7.349 5117 6.123
ANN 0.924 0.862 46.222 6.733 4.964 5.959
Ridge 0.879 0.853 72.818 8.529 6.512 7.959
LASSO | 0.878 0.852 73.581 8.573 6.525 7.966
6.3.3 The Impact of Wave Periods
(a) Ship S1 (b) Ship S3
(c) Ship S5 (d) Ship S8

Figure 10. Fit performance of four best models (ET, AB, GB, XG) over dataset Set3,ecise With

and without wave period information




None of the nine datasets under investigation considers the impact of wave periods. To further
assess whether the introduction of wave period information could improve the fit performance of ML
models, we added the features about periods (“Swell period”, “wind wave period”, and “Combined wave
period” in Table 5) into the best dataset Set3precise, and re-experimented with four best models (ET, AB,
GB, XG) for ships S1, S3, S5 and S8. Their fit performances over Set3yrecise With and without wave
period information are shown in Figure 10.

Figure 10 indicates that including wave period information into models will not improve and even
slightly reduces the fit performances of models. This might be explained by the fact that the impact of
wave period on a mega containership’s fuel efficiency at sea is negligible and adding it to models might
introduce additional noise associated with its data. In another word, the impact of wave period on a big
containership’s fuel efficiency at sea could be covered by the random errors or noises of machine
learning models, when voyage report data and meteorological data are used as the data sources.

6.3.4 Robustness of ML Models' Performance

Sections 6.3.1 and 6.3.2 report the fit performance of eleven ML models, and the experiment result
reported for each ML model over each dataset of each ship is based on the average of 20 runs
corresponding to 20 random splits of the dataset into training set and test set. One may further ask a
question ‘does the fit performances of the models vary too much across the 20 runs?’. To answer this
question about the robustness of ML models’ performance against random splits of a dataset, we present
the R*values of eleven ML models over the best dataset Set3precise for ships S1, S3, S5, and S8 in Figure
11.

It can be seen from Figure 11 that except DT, LB and ANN, the robustness of the remaining machine
learning models is acceptable. RF possesses the highest robustness. The performances of the best models
we recommended, including ET, AB, GB and XG, are robust enough for industry applications.

(a) DT (b) ETs




(c) RF (d) AB

(e) GB (H XG

(&) LB (h) SVM




(i) ANN (j) Ridge

(k) LASSO
Figure 11. The R%, mean and standard deviation of the models (DFS1)

6.3.5 Relative | mportance of Each Determinant to Ship Fuel Efficiency

Yan et al. (2021) point out that one of the major drawbacks of ML models is poor interpretability.
However, one of the exceptions is that tree-based models possess the ability to quantitatively explain
the relevant importance of each input variable of the model to the dependant/output variable. The best
ML models found by this study, including ET, AB, GB and XG, are all decision tree-based models.
Therefore, we conducted the analyses of relevant importance of each feature/determinant to ship fuel
consumption rate, based on these four models over the best dataset Set3precise 0f ships S1, S3, S5 and S8,
and collected the results in Figure 12.

The first three subfigures (a-c) of Figure 12 reveal that sailing speed is the most important
determinant of fuel consumption rate whose importance is between 0.6 and 0.8. This is consistent with
the findings in ship propulsion theories.

Though displacement/draft is usually considered as the second important determinant in ship
propulsion principles, such as the Admiralty coefficient, its impact on ship fuel efficiency at sea is
basically lower than wave conditions if both swell and wind waves are considered. Apparently, the
impact of displacement is significantly lower than the total impact of sea and weather conditions in



shipping reality. This finding does not falsify the significant importance of displacement to ship fuel
efficiency in calm waters, but ships eventually sail at sea with different weather and sea conditions rather
than stay in calm waters.

When sea and weather conditions are considered, waves, consisting of swells and wind waves, play
the most significant role. The impact of sea water temperature could be close to that of
displacement/draft, which might be beyond the imagination of seafarers at sea. The impact of wind
conditions (wind speed and direction) is close to that of sea water temperature and thus also close to the
impact of displacement/draft. These results all confirm the importance of weather routing practice in
saving bunker fuel and reduce ship emissions.

Seafarers at sea attach much importance to sea currents, but their impact on a ship’s fuel efficiency
in reality could be not comparable to other sea or weather conditions, such as waves, wind, or sea water
temperature.

Trim’s importance for ship fuel efficiency is usually less than 0.05 but sometimes can reach 0.1,
which confirms the rationality of conducting trim optimization for ships. This result is consistent with
that reported by the literature on trim optimization.

As shown in Figure 12(d), compared to ET, AB, and GB, the XG model reduces the polarization of
relative importance allocated to different variables. For instance, in XG’s result, the importance of
sailing speed decreases and that of weather and sea conditions increases. This could be related to the
model structure of XG that introduces a regularization term to avoid overfitting and prevents one
variable from attracting too much importance. This characteristic of XG model could have caused the
inconsistence of its findings on relative importance of variables/features with other decision tree- based
models such as ET, AB, and GB. Therefore, this study leans more on the consistent results of ET, AB
and GB during the analysis towards feature importance.

(a) ET model.

AMU




(b) AB model

(c) GB model

(d) XG model.

Figure 12. The average relative importance of models input variables (DFS1)
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6.4. Summary

Motivated by the data quality issue of voyage reports on weather and sea conditions caused by
snapshotting and human eye inspection, this study with DFS1 fuses voyage report data and
meteorological data, and constructs nine datasets from this data fusion solution. We experimented with
these nine datasets and eleven widely-adopted ML models to quantify the relationship between a ship’s
bunker fuel consumption rate (MT/day, or MT/h) and its determinants, including sailing speed,
displacement/draft, trim, wind, waves (swells and wind waves), sea currents, and sea water temperature,
over eight 8100-TEU to 14,000-TEU containerships from a global shipping company.

The best dataset we found, Set3pedse, reveal the benefits of fusing voyage report data and
meteorological data and replacing the information of weather and sea conditions in voyage report by
that from meteorological data. However, Set3y«cise is only sightly better than the original voyage report
(Setl) which indicates that voyage report has rather acceptable (hard-to-be-improved) data quality for
many application scenarios, which somewhat disapproves our industry collaborator’s conjecture that
retrieval of accurate information of weather and sea conditions from meteorological data sources would
“significantly” improve the data quality for ship fuel efficiency analysis.

Among elven ML models, decision tree-based ensemble models, especially ET, AB, GB and XG,
present the best fit and generalization performances. Their R? values over the best datasets are all above
0.96 and even reach the level of 0.99 to 1.00, while their R? performance over test data is in the range
from 0.74 to 0.90. Their fit errors on daily bunker fuel consumption, measured by RMSE and MAE, are
usually between 0.5 to 4.0 ton/day. Their performances against random divisions of the dataset into
training and test sets are also quite robust. Therefore, it is safe for industry specialists to only install ET,
AB, GB and XG into their machine learning model arsenal for ship energy efficiency analysis.

These four tree-based models are recommended also because of their ability to interpret the relative
importance of different determinants/factors/features to a ship’s fuel consumption rate. Our findings on
the relative importance of sailing speed and trim are consistent with existing literature. However, all the
tree-based models confirm that the impact of weather and sea conditions is significantly higher than that
of the actual displacement/draft of a ship, which indicates the higher practical importance of weather
routing studies compared to the studies that seek a sailing route of a ship to optimize its cargo load based
on the Admiralty coefficient for the purpose of saving bunker fuel.

This is a pioneering study that combines several data sources to improve the accuracy of ship fuel
consumption rate forecast targeting the industry applications in energy-efficient operational measures
promoted by IMO, including speed optimization, trim optimization, weather routing, and the virtual
arrival policy. The research scope/boundary discussed in Section 3.2 reflects our research limitations.

7. Data fusion solution 2 (DFS2): voyage report data + meteorological data +

AIS data

7.1 Rationale of Fusing Voyage Report Data, Meteorological Data, and Al S Data

In our previous study with DFS1, we noticed the data quality issue of voyage report caused by the
deck officers’ practice of snapshotting and eye inspecting weather and sea conditions. To remedy this
issue, we developed a solution DFS1 of fusing voyage report data and publicly accessible meteorological
data by replacing the information of snapshotted weather and sea conditions in voyage report with
accurate hourly weather and sea conditions retrieved from meteorological data. Over the nine datasets




from data fusion for eight 8100-TEU to 14,000-TEU containerships, several ship-specific ML models
of forecasting ship fuel consumption rate achieve high fit performances with R? values all above 0.96
and even reaching 0.99 to 1.00 for training sets, while their R? values for test sets are also promising
between 0.74 and 0.90.

In DFSI1, a key step before retrieving exact information of weather and sea conditions from
meteorological data is calculating the ship’s hourly geographical positions (<Timestamp, latitude,
longitude>) along its sailing trajectory. DFS1 assumes the ship follows the great circle route
approximated by the widely adopted rhumb line and adopts the thumb line formulas (Bennett, 1996;
Weintrit and Kopacz, 2011) to calculate the geographical locations the ship passes in a day. Several ship
captains we consulted commented that the great circle route may not be followed in sailing for several
reasons and using the geographical positions derived from the great circle route or the rhumb line may
introduce inaccuracy when weather and sea conditions are retrieved from meteorological data. This is a
prominent limitation of DFS1.

To address this limitation, we approached MarineTraffic headquartered in Greece and purchased
the AIS data of the eight containerships shown in Table 1, because AIS data provides the detailed
geographical positions of the ship forming its actual sailing trajectory. Meanwhile, AIS data also
provides the information of the ship’s heading at each geographical position, and this may make the
calculation of the directions of wind/waves/sea currents relevant to the ship’s heading more reliable.
The objective of this study is to investigate whether the introduction of actual geographical positions in
AIS data will improve the information quality of weather and sea conditions retrieved from
meteorological data and therefore further improve the fit performances of ML models when
meteorological data and voyage report data are combined.

7.2 Approach to Fusing Voyage Report Data, Meteorological Data, and Al S Data

The information in AIS data about “Timestamp (UTC)”, “Longitude Position”, and “Latitude
Position” could be quite useful in that it helps us find the actual geographical positions of the ship in a
day and recover its actual sailing trajectory on that day. Further, accurate detailed information of weather
and sea conditions the ship sails through can be retrieved from meteorological data, according to the
actual sailing trajectory. “Ship Heading” information of AIS data could be also useful because it helps
convert the (absolute) directions of wind, waves, and sea currents reported by meteorological data to
relative directions of wind, waves, and sea currents against the ship’s heading, which is desired in ship
fuel efficiency modeling. DFS1 had to utilize “True Course” information in voyage report in the
calculation of relative directions of wind, waves, and sea currents as a workaround because voyage
report does not record the heading of the ship.

The approach of fusing voyage report data, AIS data, and meteorological data is illustrated in
Figure 13. First, for a given day recorded by voyage report, the ship’s hourly geographical positions are
retrieved from AIS data. Second, according to these geographical positions, the hourly weather and sea
condition information are queried and obtained from meteorological data including ECMWF (wind,
waves, sea water temperature) and Copernicus (sea currents). Then the directions of wind, waves, and
sea currents are converted to the relative directions to the ship’s heading. Third, these hourly weather
and sea conditions are aggregated and produce their daily averages. At last, daily average conditions of
wind, waves, sea water temperature, and sea currents are used to replace the meteorological record in
the voyage report. In this data fusion approach, the noises of AIS data are not a concern because only
hourly geographical positions of the ship are needed for the sake of retrieval of weather and sea
conditions. Finer positions of the ship from AIS data are meaningless because our target in this study is
the daily average weather and sea conditions the ship sails through for each day recorded by the voyage



report. Even if there were noises in sampling the ship’s hourly geographical positions from AIS data,
they would not cause a problem in calculating the daily average weather and sea conditions confronting
the ship.

Similar to DFSI1, this study with DFS2 also allows the conversion of the precise values representing
wind speed and relative directions of wind, waves, and sea currents to fuzzy values. See Tables 3 and
4 and Figure 1. This is because voyage reports usually adopt fuzzy values and our preliminary
experiments show that fuzzy values sometimes overcome data noises/inaccuracy and improve fit
performance of ML models. Overall, nine datasets are constructed from this data fusion approach, and
features of each dataset are listed in Table 9. “Set1” in Table 9 is exactly the same “Set1” in Table 5,
which represents the voyage report.

Figure 13. Approach of fusing voyage report data, AIS data, and meteorological data
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7.3 Experimental Results and Discussion
7.3.1 Performance of Eleven ML Models over Nine Datasets and Selection of the Best

Datasets

Same to Li et al. (2022), for each dataset in Table 9, we randomly divided it to a training set (80%
of data entries) and test set (20% data entries), which result in a split of the dataset. For each split of the
dataset, we experimented with a given ML model involving a process of five-fold cross-validation based
hyperparameter optimization with the Bayesian Optimization method using the tree-structured Parzen
Estimators of hyperopt 0.2.2 library (Hyperopt) (Bergstra et al., 2013), which is called a run. For each
ML model over each dataset, we have 20 random splits of the dataset and thus 20 runs of experiments.
Each performance metric (R%, MSE, RMSE, MAE and MAPE for training set, R? (test) for test set, see
definition in Section 6) takes the average of 20 runs to overcome the influence of random splitting of
the dataset. Experimental results of ship S1 are reported in Table 10, while the results of ships S2 to S8
can be found in Tables A8 to A14 in Appendices. Note that the performances of the best datasets with
DFSI, including Setl and Set3precise, are also reported in Tables 10 and A8 to A14, for the convenience
of comparison with DFS1 in Section 6.

When quality of datasets and performance of ML model are interwoven, shown in Tables 10 and
A8 to Al4, a voting scheme same to Section 6 is adopted. Each ML model acts as a voter and votes for
best datasets (candidates) by considering R? (with two decimal places) as the first priority and R? (test)
(with two decimal places) as the secondary performance metric. The voting result is collated in Table
11 in which the last column is the votes of the corresponding ML models (voters). Figure 14 is the Tally
sheet that counts the votes received by each dataset: Figure 14(a) consider all models as voters; Figure
14(b) does not consider DT, SVM, ANN, Ridge, and LASSO as voters, because their fit performances
are significantly worse than ET, RF, AB, GB, XG and LB and thus they will not be preferred by industry
applications; Figure 14(c) further removes RF, GB and LB from the voter list because they are
dominated by ET, AB, and XG against both R? and R? (test).

It can be seen from Figure 14 that Al Byecise receives the largest number of votes, followed by
Set3precise and Setl. Al Bprecise receives 18 votes from ET, RF, AB, GB, XG and LB, according to Figure
14(b), and 9 votes from ET, AB, and XG according to Figure 14(c). This reveals that when AIS data is
available for ship fuel efficiency analysis, AlSBprecie is the best, and this dataset is better than Setl and
Set3precise from DFS1 in Section 6. This demonstrates the benefits of further fusing AIS data to voyage
report data and meteorological data considered in DFS1. Therefore, we recommend using Al Bprecise in
practice by fusing voyage report data, AIS data and meteorological data. When AIS data are not
available, we can combine voyage report data and meteorological data and utilize Set3precise, Or €ven
adopt voyage report data Setl directly.

Looking at the results here, one may ask why other datasets in Table 9 combine voyage report data,
meteorological data, and AIS data but are not competitive with the original voyage report data Setl, and
even the best dataset Al precise cannot always win the original voyage report dataset Setl. Similarly,
regarding the results reported in Section 6, one may ask why many datasets in Table 5 combine voyage
report data and meteorological data but are not competitive with the original voyage report data Setl,
and even the best dataset Set3precise with DFS1 cannot always win the original voyage report dataset Setl.
Our deep investigation into the data reveals the following possible reasons. First, as reported by
ECMWF and Copernicus Marine Service in their websites, their meteorological data cannot avoid
inaccuracy and errors, because these data rely on many types of collection equipment and the calculation
of many models. As the evidence, we will see in Section 8 that the wind conditions contained in ECMWF
are quite different from the actual wind conditions captured by the sensors on board the ships.
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Second, the power of “average” calculation plays a critical role in reducing the quality of data used
for model training. Specifically, the weather condition for a given day (corresponding to a voyage report
data entry) is estimated by taking the average of the weather conditions at 24 waypoints (hourly
waypoints) during the day. However, even accurate weather conditions at these waypoints cannot
guarantee their daily average is closer to the actual weather condition (the reality). To provide an analogy
for the sake of understanding, consider a situation in which we are estimating the actual average/mean
value of a random variable through several observations. Assume the actual average value of this random
variable is 10. Consider two different samples of observations: Sample 1 = {9.5, 9.5, 9.5, 11, 12, 13}
and Sample2= {9, 7, 5, 11, 13, 15}. The deviation of data in Sample 1 from the real average ({0.5, 0.5,
0.5, 1, 2, 3} is much smaller than that of Sample 2 ({1, 3, 5, 1, 3, 5}). However, the average value
estimated through Sample 1 is 10.75, which is worse than that estimated from Sample 2 (i.e., 10, the
same as the actual average).

Third, the quality of voyage report data might already be good enough. Specifically, when it turns
to the snapshot weather and sea condition data, a ship captain we consulted pointed out “though the
snapshot weather and sea condition data is not desired, if you snapshotted 8-meter waves/swells, it is
almost impossible that your ship sailed through good weather and sea conditions on average on that
day”. This comment indicates that the snapshot weather and sea condition data might be representative,
though to unknow degrees, for the actual weather conditions the ship sails through in a day.

Table 10. The fit performance of eleven machine learning models for ship S1 (DFS2)

Model Dataset R? R? (test) MSE E}\é{:}g (Il\;l(ﬁs) M('(;)I;E
Setl 0.846 0.643 81.022 8.934 6.851 7.995
AlS2precise 0.840 0.630 77.176 8.694 6.705 7.959
Al Rtz 0.822 0.623 85.984 9.211 7.093 8.448
Al Sprecise 0.827 0.624 83.223 9.057 6.908 8.190

DT Al SBruzy 0.837 0.630 78.690 8.719 6.714 7.970
AlHAprecise 0.841 0.641 76.360 8.633 6.604 7.779
AlSHAuzy 0.841 0.625 76.849 8.681 6.688 7.928
Al SHprecise 0.838 0.618 78.187 8.788 6.765 7.982
Al SBiyzy 0.835 0.635 79.655 8.869 6.857 8.166
Set3precise” 0.847 0.617 73.848 8.532 6.522 7.697
Setl 0.992 0.781 4.001 1.525 1.090 1.255
Al R2precise 0.958 0.773 20.546 4.176 3.152 3.765
Al Rtz 0.955 0.766 21.556 4.174 3.164 3.797
Al Sprecise 0.960 0.767 19.295 4.067 3.079 3.691
ET Al S3iuzy 0.945 0.772 26.555 4972 3.829 4.610
AlHAprecise 0.959 0.768 19.646 4.095 3.091 3.719
AlSHAtizy 0.966 0.769 16.417 3.578 2.716 3.266
Al SBprecise 0.951 0.773 23.833 4.511 3.428 4.084
Al Siuzy 0.952 0.771 23.140 4.393 3.374 4.034
Set3precise” 0.965 0.762 17.043 3.524 2.699 3.245
Setl 0.964 0.761 18.837 4.321 3.194 3.721
Al Rprecise 0.940 0.757 29.138 5.322 3.997 4.760
Al Rtz 0.934 0.757 31.834 5.575 4.183 4.994
Al SBprecise 0.932 0.753 32.837 5.657 4221 5.028
RF Al S3iuzy 0.943 0.756 27.491 5.186 3.895 4.635
AlHAprecise 0.932 0.754 32.987 5.663 4216 5.041
AlHA iz 0.940 0.758 29.145 5.335 3.985 4.762
Al Sprecise 0.938 0.751 30.021 5.416 4.040 4.798
Al Sruzy 0.949 0.766 24.816 4.914 3.678 4.368

IAMU



Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Set3predise 0.936 0.756 30.736 5.506 4.112 4911

Setl 0.955 0.758 23.482 4.687 4.036 4.940

Al 2precise 0.956 0.762 21.288 4.333 3.661 4.495

Al Rtz 0.947 0.759 25.519 4.648 3.801 4.620

Al SBprecise 0.947 0.755 25.740 4.879 4.148 5.082

AB Al Sty 0.958 0.759 20.443 4.176 3.395 4.129
AlHAprecise 0.946 0.761 26.012 4.816 4.091 5.023

AlHAuzy 0.951 0.751 23.966 4.460 3.733 4.568

Al Sprecise 0.950 0.763 24.422 4.732 3.966 4.854

Al Sruzy 0.963 0.765 17.825 3.861 3.142 3.804
Set3predise 0.938 0.752 29.988 5.180 4.370 5.371

Setl 0.987 0.764 6.570 2.238 1.633 1.893

Al 2precise 0.958 0.740 20.367 4.158 3.130 3.722

Al 2ty 0.943 0.756 27.321 5.079 3.867 4.574

Al S3precise 0.961 0.749 19.024 3.972 2.993 3.552

GB Al Sty 0.955 0.759 21.837 4.113 3.167 3.757
AlHAprecise 0.952 0.746 23.273 4.533 3.398 4.068

Al Stz 0.957 0.752 20.695 4.328 3.319 3.954

Al SBprecise 0.941 0.738 28.137 4.950 3.745 4.445

Al SBiyzy 0.955 0.754 21.469 4.385 3.360 3.967
Set3precise” 0.962 0.743 18.367 3.776 2.825 3.330

Setl 0.995 0.771 2.805 1.392 1.008 1.168

Al 2precise 0.964 0.755 17.318 3.687 2.753 3.217

Al 2tz 0.951 0.759 23.599 4.375 3.297 3.850

Al Sprecise 0.955 0.753 21.321 4.017 2.952 3.439

XG Al SBruzy 0.951 0.766 23.136 4.388 3.304 3.850
AlHAprecise 0.959 0.757 19.655 4.101 3.045 3.564

Al Hiuzy 0.945 0.756 26.670 4.796 3.626 4.259

Al SHprecise 0.940 0.755 28.831 5.231 3.827 4.389

Al Biyzy 0.957 0.759 20.713 4.086 3.018 3.475
Set3precise® 0.953 0.734 22.403 4.236 3.177 3.695

Satl 0.989 0.755 5.857 2.183 1.652 1.924

Al Rprecise 0.941 0.732 28.704 4.895 3.705 4.403

Al Rtz 0.927 0.737 34.903 5.699 4.347 5.157

Al Sprecise 0.931 0.742 33.072 5.560 4.152 4.962

LB Al SBruzy 0.922 0.739 37.613 5.982 4.551 5.421
AlHAprecise 0.929 0.723 34.023 5.658 4.281 5.131

Al Stz 0.914 0.723 41.501 6.174 4.671 5.577

Al SHprecise 0.927 0.731 34.888 5.579 4.095 4.907

Al Siuzy 0.938 0.736 29.667 5.060 3.760 4.486
Set3precise 0.943 0.723 27.467 4.806 3.609 4.272

Setl 0.861 0.784 73.082 8.540 6.365 7.156

Al R2precise 0.868 0.795 63.462 7.956 5.915 6.810

Al Rtz 0.865 0.796 64.961 8.047 6.059 6.973

Al Sprecise 0.864 0.794 65.598 8.088 6.076 7.012

Al S3iuzy 0.876 0.796 59.629 7.692 5.732 6.604

SVM AlHAprecise 0.865 0.793 64.842 8.037 6.034 6.961
AlHAtizy 0.870 0.786 62.681 7.882 5.928 6.838

Al SBprecise 0.863 0.799 65.964 8.114 6.080 6.999

Al SHryzy 0.867 0.798 64.071 7.994 5.977 6.866
Set3precise” 0.858 0.786 68.382 8.263 6.143 7.059




Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.869 0.781 68.911 8.290 6.391 7.296

Al Rprecise 0.876 0.773 59.980 7.662 5914 6.866

Al Stz 0.901 0.778 48.121 6.838 5.360 6.232

Al SBprecise 0.865 0.784 65.208 8.036 6.231 7.285

ANN Al SBruzy 0.864 0.781 66.001 8.030 6.270 7.379
AlHAprecise 0.859 0.758 68.527 7.974 6.165 7.174

Al Stz 0.878 0.775 58.615 7.552 5.914 6.949

Al Sprecise 0.871 0.780 62.329 7.848 6.054 7.041

Al Sruzy 0.868 0.773 63.823 7.814 6.053 7.071
Set3precise 0.854 0.778 70.184 8.366 6.437 7.518

Setl 0.814 0.774 97.422 9.868 7.725 8.932

Al 2precise 0.826 0.786 83.624 9.143 7.097 8.337

Al iz 0.823 0.783 85.424 9.241 7.252 8.528

Al Sprecise 0.835 0.792 79.647 8.923 6.999 8.239

Ridge Al Sty 0.833 0.793 80.613 8.977 7.083 8.330
AlHAprecise 0.832 0.790 80.693 8.981 7.014 8.239

Al Stz 0.828 0.788 82.842 9.100 7.205 8.459

Al Sprecise 0.828 0.788 82.760 9.096 7.029 8.250

Al SBruzy 0.825 0.786 84.246 9.177 7.121 8.359
Set3predise 0.830 0.784 81.939 9.050 6.993 8.192

Setl 0.814 0.773 97.552 9.875 7.711 8.917

Al precise 0.826 0.784 83.984 9.162 7.109 8.353

Al iz 0.822 0.782 85.539 9.247 7.256 8.536

Al Sprecise 0.834 0.793 79.815 8.932 6.999 8.238

Al Sty 0.832 0.791 81.130 9.005 7.087 8.327

LASSO | AlHApredise 0.832 0.792 80.977 8.997 7.027 8.257
Al Stz 0.828 0.789 83.030 9.110 7.212 8.473

Al SBprecise 0.828 0.788 82.784 9.097 7.041 8.271

Al SBiyzy 0.825 0.784 84.263 9.178 7.124 8.369
Set3precise” 0.829 0.786 82.204 9.064 6.997 8.191

Note: Set3precise is the best dataset with DFSI.




Table 11. DFS2. Best performance of each machine learning model from ten datasets and the
datasets that achieve the best performance. R? (with two decimal places) is considered as the
first priority, and R? (test) (with two decimal places) is the secondary performance metric.

Ship | Model | BestR? | BestR? Datasets
(test)
S1 DT 0.85 0.64 Setl
ET 0.99 0.78 Setl
RF 0.96 0.76 Setl
AB 0.96 0.77 Al SBiuzyy
GB 0.99 0.76 Setl
XG 1.00 0.77 Setl
LB 0.99 0.76 Setl
SVM 0.88 0.80 Al SBuzy
ANN 0.90 0.78 Al pyzy
Rldge 0.84 0.79 Al $precise
LASSO 083 079 Al S‘3precis;ne
S2 DT 085 065 Al Qprecise
ET 0.98 0.78 Al $precise
RF 0.96 0.77 Setl
AB 0.98 0.75 Al 2precise, Al SBprecises Al S3uzzy, Al HAprecise, Al DBprecise
GB 0.99 0.77 Al SHAprecise
XG 099 077 $3precise
LB 098 075 wsprecise
SVM 0.88 0.82 Al SByrecise, Al HAprecice
ANN 1091 0.79 Set3precise
Ridge | 0.84 0.81 Al SByrevices Al Aprecice
LASSO |0.84 0.81 Al S3precise, Al HAprecise
S3 DT 0.87 0.71 Al $precise
ET 0.99 0.82 Al precise, Set3precise
RF 0.96 0.81 Al precise, Al Bprecise, Al DBruzzy
AB 1 00 082 Al $precise
GB 0.97 0.82 Al 2precise, Al SBprecise, Al Bprecise, Al Bruzzy
XG 0.98 0.82 Al $precise
LB Al SZprecise, Al Sgprecise, Al $fuzzy, Al $precise, Al $fuzzy,
0.95 0.80 Set3yrerice
ANN 0.87 0.80 Al Byrecise, Set3precise
Ridge Al SBprecise, Al S3uzzy, Al HAprecise, Al HAruzzy, Al Bprecise,
0.80 0.80 Set3yrecice
LASSO Al SByrecise, Al SBtuzzy, Al HAprecise, Al Sruzzy, Al Bprecise,
0.80 0.80 Set3precise
S4 DT 0.93 0.73 Al SBruzy
ET Al Qprecis& Al Sgprecise, Al S4precise: Al $precise, Al $fuzzys
1 00 087 $3precise
RF 098 086 Al Qprecise, Al %precise, Al $fuzzy
AB Al 2precise, Al SBprecise, Al S3ruzzy, Al Bprecise, Al Bruzzy,
0.99 0.87 Set3predise
GB 1.00 0.87 Al S3precise
XG 1.00 0.87 Al SBruzzy, Set3precise
LB 0.99 0.87 Al Sprecise, Al SBruzzy, Al Bprecise, Al Bruzzy
SVM 0.94 0.85 Al Sy
ANN 095 086 Sﬂt3precise




Ship | Model BestR* | Best R? Datasets
(test)
Ridge 0.83 0.82 Setl
LASSO |0.83 0.81 Al SBprecise, Al Aprecise, Al Bprecise, Set3precise
S5 DT 0.95 0.83 Al Srizy
ET 1.00 0.90 Setl, Al 2precise, Al Sprecise, Al HAprecise
RF 0.98 0.89 Al SBiuzzy, Al HAtuzzy, Al iy
AB 1.00 0.90 Al Bz, Al SBiuzy
GB 100 089 Al Szprecise, Al &fuzzy, Al S-”preci::ie, Al $fuzzy, Al S4precise,
Al Ssprecise
XG 1 00 089 Al 8precise
LB 0.99 0.88 Setl, Al yrecise, Al SByrecise, Al SBruzy, Al Bprecise
SVM 0.93 0.88 Setl
ANN 0.94 0.89 Al fyzy
Rldge 0.89 0.88 Al Szprecise, Al $fuzzy
LASSO |0.89 0.88 Al Rprecise
S6 DT 0.86 0.57 AlHAprecise
ET 0.99 0.77 Setl, Al precice, Al nizy, Al SBruzy
RF 0.96 0.77 Setl
AB 099 075 Al Sgprecise
GB 0.97 0.79 Setl
XG 0.97 0.79 Setl
LB 0.97 0.77 Al fyzy
SVM 0.86 0.77 Al Szprecise
ANN 0.88 0.76 Al Szprecise
Ridge 0.79 0.75 Al S3precise, Al Bruzzy, Al HAprecise
LASSO |0.79 0.75 Al SBprecise, Al HAprecise
S7 DT 088 068 Sat3precis;e
ET 0.99 0.81 Set3precise
RF 0.97 0.82 Al SBruzy
AB 0.99 0.83 Al SBprecise
GB 0.99 0.79 Set3predise
XG 0.99 0.78 Set3precise
LB 0.98 0.81 Al SBprecise, Al SBruzzy
SVM 0.91 0.79 Setl
ANN 0.90 0.82 AlHAprecise
R1dge 0.82 0.76 $t3precise
LASSO 0.82 0.76 $t3precise
S8 DT 0.93 0.78 Al SBruzy
ET 1.00 0.88 Setl, Al Bprecise, Set3precise
RF 0.98 0.86 Setl, Al SBprecise, Al Bruzzy, Set3precise
AB 1.00 0.87 Al SBprecise, Al Bruzzy
GB 0.99 0.86 Al SBprecise, Al By, Set3precise
XG 0.99 0.88 Setl
LB 0.98 0.87 Setl
SVM 0.91 0.87 Set3precise
ANN 0.92 0.86 Set3precise
Rldge 0.88 0.85 83t3pre<:|se
LASSO | 0.88 0.85 Set3predise
IAMU




(a) Best dataset counts (voted by all models)

(b) Best dataset counts (voted by ET, RF, AB, GB, XG and LB)

(c) Best dataset counts (voted by ET, AB, and XG)
Figure 14. Best datasets voted by machine learning models (DFS2)




7.3.2 Performance Comparison of ML Models

While Table 11 reveals the performances of different ML models, we further report their
performances over the best dataset Al SBprecise Of eight ships in Table 12. Tables 11 and 12 both confirm
that ET, RF, AB, GB, XG and LB are good candidate models that can be adopted by the shipping
industry. Their R? values over the best datasets are all above 0.95 and even reach the level of 0.99 to
1.00, while their R? performance over the test sets is in the range from 0.75 to 0.90. The remaining
models, including DT, SVM, ANN, Ridge, and LASSO, are not recommended for industry applications
because their R* values on the training sets are usually comparatively low, while the values of R? over
the test sets have not shown any advantages compared to ET, RF, AB, GB, XG and LB.

Further, the fit performances of RF and LB are usually slightly dominated by ET, AB, GB, and XG,
against both R? and R? (test), which confirms the sufficiency of only installing ET, AB, GB and XG in
industry applications related to ship fuel efficiency analysis. GB can also be removed from industry
installation once XG has already be installed because GB and XG have close fit performances. Fit errors of
ET, AB, GB, and XG on daily bunker fuel consumption, measured by RMSE and MAE, are usually between
0.8 to 4.5 ton/day, though fit errors might be over 4.5 ton/day occasionally if datasets are not carefully chosen.

The experimental results reported in Tables 11 and 12 also rank the performances of eleven ML
models into the following four different tiers. The performances of the models in the same tier are quite
close, while those of the models in different tiers are significantly different. All the experimental
findings for fit performance of ML models are consistent with those from Section 6 with DFSI.

Tier 1: ET, AB, GB, and XG.
Tier 2: RF, LB

Tier 3: DT, SVM, ANN

Tier 4: Ridge, LASSO.

Table 12. The fit performance of eleven machine learning models over dataset Al S5yrecise

Ship | Model R? R? (test) MSE ﬁ}\g:; (l:;[(ﬁls) M({,ZI;E
DT 0.838 0.527 78.187 8.788 6.765 7.982

ET 0.951 0.719 23.833 4511 3.428 4.084

RF 0.938 0.692 30.021 5.416 4.040 4.798

AB 0.950 0.706 24.422 4.732 3.966 4.854

GB 0.941 0.676 28.137 4.950 3.745 4.445

S1 XG 0.940 0.696 28.831 5.231 3.827 4.389
LB 0.927 0.667 34.888 5.579 4.095 4.907

SVM 0.863 0.752 65.964 8.114 6.080 6.999

ANN 0.871 0.728 62.329 7.848 6.054 7.041

Ridge | 0.828 0.738 82.760 9.096 7.029 8.250
LASSO | 0.828 0.737 82.784 9.097 7.041 8.271

DT 0.838 0.546 100.776 | 9.878 7.326 8.621

ET 0.979 0.717 13.486 3.239 2.390 2.760

RF 0.948 0.693 32.466 5.645 4.072 4.748

AB 0.975 0.690 15.834 3.830 3.227 3.765

2 GB 0.964 0.705 22.248 4.288 3.136 3.537
XG 0.965 0.700 21.869 4.287 2.959 3.263

LB 0.959 0.662 25.714 4.671 3.276 3.798

SVM 0.880 0.758 74.547 8.599 6.191 6.738

ANN 0.895 0.744 65.299 8.036 6.139 6.847

Ridge | 0.829 0.760 106.864 | 10.332 7.780 8.791
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Ship | Model R? R (test) MSE ﬁ%lf}g (lt\;[cﬁs) M(f;gE
LASSO 0.829 0.760 106.939 10.336 7.779 8.774

DT 0.867 0.630 97.066 9.534 6.948 8.222

ET 0.982 0.799 13.029 3.188 1.858 2.364

RF 0.963 0.777 27.121 5.168 3.376 4.170

AB 0.995 0.789 3.588 1.728 1.292 1.513

GB 0.969 0.787 22.552 4.221 2.710 3.366

S3 XG 0.976 0.789 17.745 3.884 2.439 2.960
LB 0.952 0.770 35.323 5.432 3.468 4412

SVM 0.840 0.795 115.821 10.727 6.746 8.262

ANN 0.860 0.781 101.322 10.029 6.763 8.262

Ridge 0.796 0.771 147.564 12.133 8.425 10.745
LASSO 0.796 0.770 147.612 12.135 8.426 10.746

DT 0.904 0.706 78.681 8.637 6.425 6.897

ET 0.998 0.849 1.642 0.927 0.651 0.696

RF 0.975 0.835 20.097 4.472 3.292 3.590

AB 0.988 0.847 9.701 2.956 2.466 2.774

GB 0.991 0.851 7.631 2.412 1.810 1.933

S4 XG 0.992 0.848 6.441 2.074 1.548 1.640
LB 0.992 0.842 6.859 2.321 1.771 1.925

SVM 0.927 0.836 59.875 7.686 5.642 6.018

ANN 0.939 0.846 50.219 7.062 5.524 5.962

Ridge 0.827 0.775 141.409 11.888 9.244 9.534
LASSO 0.827 0.775 141.586 11.895 9.244 9.530

DT 0.948 0.764 28.458 5.104 3.741 5.634

ET 0.997 0.875 1.475 0.901 0.652 0.988

RF 0.983 0.857 9.594 3.090 2.281 3.497

AB 0.995 0.869 2.723 1.476 1.172 2.123

GB 0.997 0.874 1.628 1.102 0.823 1.310

S5 XG 0.991 0.871 4.860 1.909 1.382 2.183
LB 0.991 0.858 4.875 2.049 1.523 2.390

SVM 0.918 0.856 45.274 6.711 4.874 7.385

ANN 0.935 0.855 36.276 5.973 4.538 6.997

Ridge 0.887 0.851 62.515 7.903 5.941 9.040
LASSO 0.887 0.851 62.689 7.914 5.950 9.050

DT 0.847 0.521 63.834 7.896 5.826 7.701

ET 0.984 0.729 6.604 2.439 1.780 2.368

RF 0.959 0.711 17.057 4.116 2.974 3.950

AB 0.983 0.714 6.959 2.393 1.958 2.888

GB 0.954 0.731 19.294 4.244 3.282 4.469

S6 XG 0.948 0.731 21.685 4.533 3.501 4.755
LB 0.956 0.713 18.441 3.987 3.023 4.106

SVM 0.846 0.738 64.572 8.017 5.703 7.479

ANN 0.868 0.731 55.181 7.401 5.673 7.526

Ridge 0.778 0.707 92.805 9.631 7.393 9.895
LASSO 0.777 0.704 93.139 9.648 7.387 9.878

DT 0.865 0.633 54.511 7.334 5.473 7.099

ET 0.978 0.811 8.811 2.497 1.753 2.266

37 RF 0.964 0.787 14.703 3.799 2.760 3.604
AB 0.988 0.802 4.812 2.046 1.675 2.298

GB 0.975 0.802 10.330 3.084 2.147 2.810

XG 0.973 0.803 10.967 3.204 2.208 2.823
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Ship | Model R? R (test) MSE ﬁ%las}g (lt\;[cﬁ}lj:) M(f;gE
LB 0.981 0.775 7.624 2.614 1.804 2.364

SVM 0.854 0.789 58.893 7.641 5411 6.831

ANN 0.879 0.778 48.929 6.903 5.287 6.805

Ridge 0.809 0.771 77.312 8.789 6.635 8.431
LASSO 0.808 0.769 77.734 8.813 6.664 8.483

DT 0.908 0.738 55.429 7.369 5.275 6.362

ET 0.998 0.860 1.223 0.864 0.549 0.687

RF 0.975 0.835 15.054 3.848 2.645 3.229

AB 0.995 0.847 3.047 1.544 1.182 1.516

GB 0.988 0.839 7.367 2.097 1.438 1.781

S8 XG 0.973 0.843 16.064 3.747 2.646 3.231
LB 0.973 0.827 16.500 3.523 2.521 3.138

SVM 0.897 0.838 62.015 7.865 5.503 6.604

ANN 0.911 0.824 53.888 7.282 5.345 6.458

Ridge 0.867 0.817 80.108 8.945 6.728 8.344
LASSO 0.867 0.818 80.433 8.963 6.737 8.348

7.3.3 The Impact of Wave Period

We further added “combined waves period” to the best dataset Al SBprecise to see whether adding
wave period information improves the experimental result. The experimental results of three best
models (ET, AB, and XG) for ships S1, S3, S5, and S8 are shown in Figure 15.

(a) Ship S1 (b) Ship S3

(c) Ship S5 (d) Ship S8
Figure 15. Fit performance of three best models (ET, AB, XG) over dataset Al S5precise, With and
without wave period information
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Figure 15 reveals that including wave period information into models might improve the fit
performance of models (Ships S1 and S5) but this improvement is often negligible. It might also slightly
reduces the fit performance of models. This indicates that the influence of wave period on the fuel
consumption rate of a mega conainership at sea is negligible and could be explained by the noises
associated with the training data. By considering the consistent result with Section 6, we do not
recommend including wave period into models, if voyage report data and meteriological data are
combined, no matter whether AIS data is involved.

7.3.4 An Experimental Summary of DFS1 and DFS2

(a) Model: ET; Performance metric: R? (b) Model: ET; Performance metric: RMSE
(c) Model: AB; Performance metric: R? (d) Model: AB; Performance metric: RMSE
(e) Model: XG; Performance metric: R (f) Model: XG; Performance metric: RMSE

Figure 16. Fit performance (R? and RMSE) of three best models (ET, AB, XG) on three best
datasets (Set 1, Set3precise, Al SSprecise)




This section summarizes the experimental findings in Section 6 with DFS1 and Section 7 with DFS2.
Figure 16 illustrates the fit performances (R”> and RMSE) of three best models (ET, AB and XG) over
three best datasets: Setl is the original voyage report data, Set3precise represents the best dataset by fusing
voyage report data and meteorological data, and Al S5yesise represents the best dataset by fusing voyage
report data, meteorological data, and AIS data. Overall, as shown in the Tally sheet in Figure 14,
Al S5precise 1s slightly better than Set3precise Which in turn is slightly better than Setl. The fit errors of ET,
AB and XG over these datasets are normally within 5 ton/day and can be as low as less than 1 ton/day.

Figures 14 and 16 also reveal that the decision of selecting good ML models is interwoven with the
decision of selecting good datasets. For instance, in Figure 16, when the model AB is adopted, Al S5precise
demonstrates the quality of the best dataset. However, when ET or XG is adopted, Setl and Set3precise
have some chance to win.

7.4. Summary

This study was motivated by a limitation of our previous study in Section 6 that weather and sea
condition information derived from the great circle sailing route (suggested by industrial professionals)
might be inaccurate. In this study, AIS data is further fused to voyage report data and meteorological
data in that AIS data provides actual geographical positions of the ship which further help to retrieve
more accurate weather and sea condition information from meteorological data.

To summarize Sections 6 and 7, when dataset choice is considered, the original voyage report
dataset Setl has a decent quality for ship fuel efficiency modeling; if more effort is paid to fuse voyage
report data and meteorological data, data quality improves slightly and Set3precise can be adopted. When
AIS data is available, further including AIS data might also be beneficial, which suggests the adoption
of the dataset Al SSyrecise. As far as ML model choice is concerned, we recommend the installation of four
decision-tree based models including ET, AB, GB, and XG because they usually possess the highest fit
performance and good generalization performance. Their performances are also quite robust against
random splits of a dataset into training and test sets.

Overall, the best datasets found, including Setl, Set3pecise, and Al S5precise, €nsure accurate fit
performances of best ML models: R? on the training set is above 0.96 and even reaches 0.99 to 1.00,
and R? on the test set is between 0.74 and 0.90; the fit errors measured by RMSE and MAE are between
0.5 and 4.5 ton/day. This accuracy is sufficient for many industry applications and energy-efficient
operational measures for shipping companies, including sailing speed optimization, weather routing,
and virtual arrivals.



8. Data fusion solution 3 (DFS3): sensor data + meteorological data

8.1 Rationale of Fusing Sensor Data and Meteorological Data

Our previous studies in Sections 6 and 7 address the three RQs by exploring the benefits of fusing
voyage report data, meteorological data, and AIS data with widely adopted machine learning (ML)
models. Sections 6 and 7 report that given the best datasets found from data fusion, the state-of-the-art
decision tree-based ML models achieve a high fit performance with R? values above 0.96 and mostly
from 0.99 to 1.00, and a good generalization performance with R? values on test sets from 0.75 to 0.90.
The average fit errors, measured by RMSE and MAE, are between 0.8 and 4.5 ton/day. The selected
datasets and ML models are competent for many voyage-based fuel-saving measures such as sailing
speed optimization, weather routing, and virtual arrival. Meanwhile, Section 7 points out this might be
highest performance we could achieve for mega containerships when voyage report data is used as the
main source of bunker fuel consumption. The originates from the fact that voyage report data provides
a ship’s “daily” fuel consumption information and this data granularity/resolution limits the possibility
of further improving the accuracy of ship fuel consumption rate models.

Therefore, it will be interesting to explore some data sources of bunker fuel consumption with a
finer data granularity, such as sensor data, and the benefits of combing these data sources with other
data sources that provide complementary information. This study makes effort in this direction by fusing
sensor data and meteorological data, constructing nine datasets from this data fusion, experimenting
with widely adopted ML models over two 9,200-TEU containerships (ships S5 and S6 in Table 1), and
revealing the benefits of fusing sensor data and meteorological data.

The wind condition information contained in sensor data is an important indicator of weather
conditions confronting a ship. However, conditions of waves, sea water temperature, and sea currents
are absent from sensor data. Therefore, we approach publicly accessible meteorological data provided
by European Centre for Medium-Range Weather Forecasts (ECWMF) and Copernicus Marine Service
(CMEMS, “Copernicus”). The finest meteorological datasets from ECWMF with the resolution of 0.25°
(longitude) A?0.25° (latitude)A? A? 1 hour (time) are adopted. ECWMF does not provide the data about
sea current conditions. Therefore, the finest datasets for sea currents from Copernicus Marine Service
are adopted whose resolution is 0.25° (longitude) A? 0.25° (latitude)A? A? 3 hour (time). For a detailed
description of data from ECWMF and CMEMS, see Section 4.

8.2 Approach of Fusing Sensor Data and Meteorological Data

To fuse sensor data and meteorological data, the information contained in sensor data about
“Timestamp (UTC)”, “Longitude Position”, “Latitude Position”, and a ship’s “heading (°)” is used. First,
given a sensor data entry, the ship’s “Timestamp (UTC)”, “Longitude Position”, “Latitude Position” is
retrieved. Based on this piece of information, the weather and sea conditions the ship experienced at this
particular geographical position and time are queried and obtained from the meteorological data sources
provided by ECWMF and CMEMS. The weather and sea condition information (wind speed, wind
direction, wave direction, sea current speed, sea current direction) from the meteorological data are
absolute information regardless of a ship’s sailing course and heading. Therefore, second, the ship’s
“heading” information in sensor data is used to convert the absolute weather/sea condition information
to relative information to a ship’s heading, because weather and sea conditions relative to a ship’s
heading are more meaningful for fuel efficiency analysis. Figure 17 illustrates this data fusion approach.

With this data fusion approach, nine datasets shown in Table 13 are constructed by considering the
research purpose of developing fuel consumption rate models for voyage-based energy-efficient
operational measures and the endogeneity issue discussed by Yan et al. (2021). Data distributions of the




features in Table 13 are presented in Figures 18 and 19, for ships S5 and S6, respectively. Before
merging sensor data and meteorological data, ships S5 and S6 have 11,901 and 12,484 sensor data
entries, respectively. After data fusion with meteorological data, there are 11,410 and 11,968 data entries
in total, respectively, by removing the data entries with absent values.

Figure 17. Approach of fusing sensor data and meteorological data
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(a) Distribution of ship fuel consumption rate

and sailing speed (b) Distribution of trim and draft.

(c) Distribution of wind speed (Rel.) and (Rel.) (d) Distribution of wind speed (Rel.) and wind
— Sensor Data. direction (Rel) - ECMWEF .
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Figure 18. The distribution of dataset features in Table 13 (Ship S5)
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Figure 19. The distribution of dataset features in Table 13 (Ship S6)




8.3 Experimental Results and Discussion

8.3.1 A Correlation Analysis Towards the Dataset Features

We conducted a pairwise correlation analysis towards the 14 features/variables in Table 13, using
Spearman’s correlation coefficient which explains how well a variable can be modeled as a monotonical
function of the other. Figures 20 and 21 report the result. The Spearman’s correlation coefficient
between fuel consumption rate and sailing speed is 0.73 and 0.77 for ships S5 and S6, respectively,
which indicates it is mostly acceptable that fuel consumption rate can be modeled as a monotonically
increasing function of sailing speed. Similarly, with the confidence level of 0.54, we can expect that
fuel consumption rate increases when wind speed (sensor data) increases. Similarly, the statement that
an increase in draft results in an increase in fuel consumption rate only achieves a confidence level of
0.32 for ship S5 and 0.24 for ship S6.

Figure 20. Spearman’s correlation coefficients of 14 features (Ship S5)



Figure 21. Spearman’s correlation coefficients of 14 features (Ship S6)

However, it is inappropriate to utilize the values of Spearman’s correlation coefficient to rank the
relative importance of different features/variables to ship fuel efficiency (fuel consumption rate),
because Spearman’s correlation coefficient only indicates how well the relationship between two
variables can be reflected by a monotonical function, which is irrelevant to the importance of one
variable to the other. The relative importance of different features/variables to ship fuel efficiency will
be discussed later.

It is worth noting that “Wind speed (Rel.) — sensor” has a rather low correlation with “Wind speed
(Rel.) - ECMWF”, reflected by the coefficient values of 0.033 and 0.071, respectively, for ships S5 and
S6. Similarly, “Wind direction (Rel.) — sensor” has a rather low and odd (negative) correlation with
“Wind direction (Rel.) - ECMWF”, demonstrated by the coefficient values of -0.12 and -0.17,
respectively, for ships S5 and S6. Apparently, the wind condition returned from sensors on board the
ship is more reliable than that derived from the hourly data reported by ECMWF which relies on
different types of equipment and estimation of some theoretical models. This reflects the inaccuracy of
ECMWEF data and the possible noises introduced by converting the hourly ECMWF data with absolute
wind speeds and directions to 15-min data with relative wind speeds and directions to a ship’s heading.
This may explain why the best dataset found by this study, Sensor2, contains the wind condition data
from sensor data rather than from ECMWF. This might also partially explain why DFS1 and DFS2 of
this series of studies reported in Sections 6 and 7 have not produced a combined dataset that is always
significantly better than the original voyage report data (Setl).
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8.3.2 Performance of ML models over Nine Datasets and Selection of the Best Datasets

For the two mega containerships S5 and S6, seven widely adopted ML models are experimented
with over nine datasets from Table 13. These ML models include Extremely randomized trees (ET)
(Geurts et al., 20006), gradient tree boosting (GB) (Friedman, 2001), XGBoost (XG) (Chen and Guestrin,
2016), LightGBM (LB) (Ke et al., 2017), artificial neural network (ANN) (Haykin, 2008), random
forest (RF) (Breiman et al., 2001), and support vector machine (SVM) (Boser et al., 1992). Compared
to Li et al. (2022) and Du et al. (2022), ridge regression (Ridge) (Hoerl and Kennard, 1970), LASSO
(Tibshirani, 1996) and the basic decision tree (DT) model (Breiman et al., 1984) are not considered
because these three models had the worst performance in Sections 6 and 7. AdaBoost (AB) (Freund and
Schapire, 1997; Drucker, 1997) is not considered in this study as well because (a) GB and XG are
considered as the advances towards AB in machine learning theory development; and (b) our
preliminary experiments revealed the performance of AB is close to but slightly worse than GB and
XG, with the large amount of sensor data in this study. All the experimental settings are the same as
Sections 6 and 7.

Same to Sections 6 and 7, for each dataset in Table 13, we randomly divide it into a training set
with 80% of its data entries and a test set with 20% of its data entries. This is termed as a split of this
dataset. To overcome the impact of randomness in data splitting, we produce 20 splits for each dataset
in Table 13, and average the performances of each ML model over 20 random splits as the performance
indicator of this ML model for this dataset. We also adopt the same performance metrics for a ML
model as Sections 6 and 7, including R?, MSE, RMSE, MAE and MAPE for training set, R? (test) for test
set. Table 14 reports the performances of seven ML models over nine datasets for ship S5, while Table
15 reports the result for ship S6.

Table 14. The fit performance of seven machine learning models for ship S5 (DFS3)

Model * | Dataset R*® R (test)© MSE i%l:}g (11\;1(;:5) M(;)l;E
Sensorl 0.998 0.924 20.790 0.706 0.385 0.589

Sensor2 1.000 0.969 4.371 0.306 0.166 0.263

Sensor3 1.000 0.968 3.348 0.258 0.131 0.207

Sensor4 1.000 0.968 4.155 0.273 0.147 0.232

ET Sensors 1.000 0.965 5.212 0.327 0.173 0.271
Sensor6 1.000 0.968 3.943 0.266 0.141 0.223

Sensor7 0.999 0.966 8.352 0.395 0.210 0.330

Sensor8 1.000 0.969 5.148 0.345 0.184 0.291

Sensor9 1.000 0.967 2.704 0.212 0.109 0.171

Sensorl 0.990 0.925 111.231 1.586 1.051 1.617

Sensor2 0.999 0.969 13.092 0.492 0.301 0.474

Sensor3 0.999 0.967 11.210 0.455 0.279 0.437

Sensor4 0.999 0.967 9.303 0.414 0.243 0.384

GB Sensor5 0.999 0.965 5.941 0.341 0.207 0.325
Sensor6 0.999 0.967 8.743 0.423 0.250 0.392

Sensor7 0.998 0.963 27.591 0.777 0.537 0.844

Sensor8 0.999 0.967 11.513 0.465 0.289 0.455

Sensor9 0.999 0.965 8.100 0.400 0.245 0.383

Sensorl 0.981 0.917 215.192 2.240 1.460 2.244

LB Sensor2 0.996 0.965 46.974 1.021 0.694 1.089
Sensor3 0.997 0.964 36.110 0.888 0.594 0.929
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Model * Dataset R?® R? (test)® MSE ?t}\c/llfyli (It\;[(gf) M(OAA)I)’E
Sensor4 0.997 0.963 34.926 0.878 0.598 0.936

Sensor5 0.996 0.959 45.018 0.984 0.672 1.050

Sensor6 0.996 0.962 45.985 1.002 0.673 1.053

Sensor7 0.996 0.960 45.506 0.989 0.662 1.036

Sensor8 0.996 0.962 50.098 1.066 0.727 1.146

Sensor9 0.995 0.959 55.632 1.110 0.760 1.192

Sensorl 0.841 0.834 1782.833 6.541 4.696 7.164

Sensor?2 0.923 0.917 860.785 4.545 3.229 4.946

Sensor3 0.902 0.892 1092.319 5.120 3.670 5.609

Sensor4 0.918 0.910 914.236 4.684 3.343 5.116

ANN Sensor5 0.896 0.888 1161.034 5.278 3.768 5.735
Sensor6 0.917 0.911 924.206 4.709 3.355 5.143

Sensor7 0.898 0.890 1140.669 5.232 3.744 5.721

Sensor8 0.909 0.903 1014.211 4.933 3.562 5.458

Sensor9 0.886 0.878 1273.935 5.529 4.014 6.157

Sensorl 0.986 0.924 153.059 1.909 1.047 1.588

Sensor?2 0.995 0.965 60.053 1.200 0.626 0.975

Sensor3 0.994 0.964 63.344 1.233 0.648 1.004

Sensor4 0.995 0.964 60.261 1.202 0.635 0.987

RF Sensor5 0.994 0.960 69.331 1.288 0.692 1.065
Sensor6 0.995 0.964 60.744 1.206 0.640 0.994

Sensor7 0.994 0.961 69.599 1.291 0.691 1.064

Sensor8 0.994 0.964 63.108 1.230 0.630 0.980

Sensor9 0.994 0.962 66.961 1.267 0.646 1.002

Sensorl 0.960 0.909 446.793 3.268 1.945 2.950

Sensor2 0.987 0.963 141.353 1.838 1.254 1.943

Sensor3 0.986 0.955 158.722 1.944 1.359 2.101

Sensor4 0.986 0.961 158.958 1.949 1.312 2.026

SVM Sensor5 0.982 0.949 202.504 2.200 1.462 2.245
Sensor6 0.986 0.961 153.639 1.915 1.281 1.982

Sensor7 0.984 0.950 179.111 2.071 1.406 2.172

Sensor 8 0.986 0.961 158.008 1.941 1.300 2.018

Sensor9 0.985 0.950 166.134 1.992 1.376 2.130

Sensorl 0.988 0918 133.212 1.743 1.191 1.828

Sensor2 0.999 0.966 13.331 0.529 0.350 0.548

Sensor3 0.998 0.966 18.250 0.637 0.413 0.644

Sensor4 0.998 0.966 17.460 0.613 0.400 0.626

XG Sensor5 0.999 0.963 15.971 0.566 0.364 0.566
Sensor6 0.999 0.965 12.433 0.507 0.323 0.504

Sensor7 0.999 0.963 15.904 0.586 0.365 0.568

Sensor8 0.999 0.965 15.598 0.569 0.367 0.575

Sensor9 0.999 0.964 13.206 0.529 0.343 0.535

Notes.

2 AdaBoost (AB) was not included in this study because (a) GB and XG are considered as the advances towards
AB in machine learning theory development; (b) our preliminary experiments revealed the performance of AB
is close to but slightly worse than GB and XG, with the large amount of sensor data in this study.

b R? for training set.

© R2 for test set.




Table 15. The fit performance of seven machine learning models for ship S6 (DFS3)

(AMC)

Model ? Dataset R2® R (test)® MSE ﬁ}é[:}g (]t\;[(i:.}}?) M(I(;’I))E
Sensorl 0.998 0.943 47.029 0.987 0.646 0.841

Sensor2 1.000 0.977 5.862 0.326 0.211 0.281

Sensor3 1.000 0.974 7.144 0.348 0.230 0.307

Sensor4 1.000 0.976 7.773 0.378 0.248 0.333

ET Sensor5 1.000 0.972 9.945 0.462 0.305 0.406
Sensor6 1.000 0.975 6.061 0.347 0.222 0.295

Sensor7 1.000 0.972 9.847 0.471 0.305 0.404

Sensor8 1.000 0.975 8.721 0.433 0.290 0.387

Sensor9 1.000 0.971 8.460 0.442 0.289 0.384

Sensorl 0.990 0.940 202.349 2.128 1.540 2.049

Sensor2 0.999 0.976 15.356 0.558 0.376 0.507

Sensor3 0.999 0.973 15.331 0.557 0.391 0.525

Sensor4 0.999 0.975 15.925 0.597 0.389 0.524

GB Sensor5 1.000 0.972 9.389 0.424 0.283 0.381
Sensor6 0.999 0.974 11.789 0.486 0.319 0.430

Sensor? 0.998 0.969 48.980 1.067 0.781 1.044

Sensor8 0.998 0.974 44.638 0.989 0.667 0.888

Sensor9 0.999 0.970 18.288 0.570 0.388 0.517

Sensorl 0.982 0.935 381.070 2.939 2.120 2.795

Sensor2 0.997 0.973 72.018 1.284 0.939 1.254

Sensor3 0.996 0.970 77.293 1.322 0.967 1.295

Sensor4 0.996 0.971 86.995 1.408 1.033 1.379

LB Sensor5 0.996 0.967 82.839 1.337 0.975 1.305
Sensor6 0.995 0.970 111.632 1.591 1.160 1.547

Sensor? 0.996 0.967 84.585 1.388 1.006 1.344

Sensor8 0.996 0.970 89.087 1.412 1.032 1.374

Sensor9 0.996 0.965 78.583 1.308 0.954 1.273

Sensorl 0.866 0.863 2832.667 8.245 5.935 7.615

Sensor2 0.935 0.931 1372.573 5.739 4.260 5.594

Sensor3 0.926 0.922 1562.461 6.123 4.554 5.983

Sensor4 0.932 0.928 1445.245 5.889 4.335 5.694

ANN Sensor5 0.921 0.917 1668.811 6.328 4.672 6.134
Sensor6 0.930 0.926 1485.849 5.971 4.408 5.763

Sensor? 0917 0.913 1751.915 6.484 4.790 6.260

Sensor8 0.916 0.913 1764.069 6.506 4.801 6.223

Sensor9 0.900 0.897 2103.728 7.105 5.209 6.732

Sensorl 0.989 0.939 223.262 2.308 1.529 1.984

Sensor2 0.996 0.973 89.147 1.462 0.936 1.227

Sensor3 0.995 0.970 98.361 1.536 0.974 1.275

Sensor4 0.995 0.971 96.748 1.523 0.981 1.285

RF Sensor5 0.995 0.968 106.136 1.595 1.014 1.324
Sensor6 0.995 0.970 98.826 1.539 0.989 1.291

Sensor? 0.995 0.967 109.389 1.619 1.033 1.347

Sensor8 0.995 0.970 103.479 1.575 1.016 1.326

Sensor9 0.995 0.967 113.163 1.647 1.042 1.355

Sensorl 0.958 0.923 877.202 4.585 3.047 3.889

Sensor2 0.989 0.972 237.134 2.384 1.851 2.444

SVM Sensor3 0.985 0.961 316.781 2.753 2.048 2.689
Sensor4 0.988 0.970 257.851 2.485 1.909 2.517

Sensor5 0.983 0.958 357.214 2.925 2.146 2.814
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Model ? Dataset RZ® R (test)® MSE ﬁ}\é{:}g (lt\;[(ﬁ}}%) M(I(ZI))E
Sensor6 0.987 0.969 274.848 2.564 1.923 2.531

Sensor7 0.984 0.956 338.096 2.841 2.081 2.729

Sensor8 0.988 0.968 245.671 2.426 1.872 2.453

Sensor9 0.984 0.950 331.498 2.812 2.085 2.712

Sensorl 0.987 0.937 269.027 2.486 1.799 2.379

Sensor2 0.999 0.975 24.510 0.740 0.517 0.690

Sensor3 0.999 0.972 25.761 0.735 0.516 0.686

Sensor4 0.999 0.974 25.744 0.743 0.525 0.701

XG Sensor5 0.999 0.971 27.194 0.758 0.526 0.701
Sensor6 0.999 0.973 29.003 0.776 0.545 0.726

Sensor7 0.999 0.970 22.467 0.675 0.471 0.627

Sensor8 0.998 0.973 32.380 0.852 0.599 0.798

Sensor9 0.999 0.970 26.362 0.761 0.533 0.707

Notes.

2 AdaBoost (AB) was not included in this study because (a) GB and XG are considered as the advances towards
AB in machine learning theory development; (b) our preliminary experiments revealed the performance of AB
is close to but slightly worse than GB and XG, with the large amount of sensor data in this study.

b R? for training set.

¢ R? for test set.

Table 16. DFS3. Best performance of each machine learning model from nine datasets and the
datasets that achieve the best performance. R? (train) (with three decimal places) is considered
as the first priority, and R? (test) (with three decimal places) is the secondary performance

metric.

Ship Model Best R Best R? (test) Datasets
S5 ET 1.000 0.969 Sensor2, Sensor8

GB 0.999 0.969 Sensor2

LB 0.997 0.964 Sensor3

ANN 0.923 0.917 Sensor2

RF 0.995 0.965 Sensor2

SVM 0.987 0.963 Sensor2

XG 0.999 0.966 Sensor2

S6 ET 1.000 0.977 Sensor2

GB 1.000 0.972 Sensor5

LB 0.997 0.973 Sensor2

ANN 0.935 0.931 Sensor2

RF 0.996 0.973 Sensor2

SVM 0.989 0.972 Sensor2

XG 0.999 0.975 Sensor2




In Tables 14 and 15, the performance of ML models and quality of datasets are interwoven together.
To decouple the performance of ML and quality of datasets, we adopt the same voting scheme as
Sections 6 and 7 and present the voting result in Table 16. In Table 16, each ML model acts as a voter
and votes for best datasets (candidates) by considering R? (with three decimal places) as the first priority
and R? (test) (with three decimal places) as the secondary performance metric. The last column is the
votes of each ML model (voter).

It can be seen from Table 16 that Sensor2 is the best dataset voted by all models. This confirms the
benefits of fusing sensor data and meteorological data. As an insight for industry application, when
these two datasets are combined, as far as weather and sea conditions are considered, wind condition
information from sensor dataset is preferred. Then the information about wave conditions, sea water
temperature and sea currents from meteorological data sources can be utilized.

When the results from Sensorl and those from Sensor2 are compared, Tables 14 and 15 also
demonstrate the benefits of fusing sensor data and meteorological data over all the ML models. For
instance, for ship S6, the XG model produces a RMSE of 2.486 ton/day with the dataset Sensorl, and
a RMSE of 0.740 ton/day with the dataset Sensor2. The XG model also generates a MAE of 1.799
ton/day with the dataset Sensor1, and a MAE of 0.517 ton/day with the dataset Sensor2. Similarly, with
the ANN model, ship S6’s RMSE and MAE are 8.245 ton/day and 5.935 ton/day, respectively, with the
dataset Sensor1. The dataset Sensor 2 reduces the values of these two metrics to 5.739 ton/day and 4.260
ton/day, respectively.

8.3.3 Performance Comparison of ML Models

To further compare the performances of ML models, we tabulate the performance metrics of seven
ML models over the best dataset Sensor2 in Table 17. Table 17 finds ET, GB and XG are the best
machine learning in terms of all the performance metrics, which is consistent with the results of Sections
6 and 7. These three models achieve their R? at 0.999 or 1.000 on the training sets, and their R? values
over the test sets are also all above 0.966. Their RMSE values are below 0.75 ton/day, and MAE below
0.52 ton/day. These results are rather beyond the requirements of most industry applications for ship
fuel efficiency analysis.

Compared to results in Table 6 with those in Sections 6 and 7, it can be seen that modeling accuracy
(fit performance) and generalization performance of every ML model have been improved with sensor
data, compared to voyage report data. This is because sensor data is superior to voyage report data in
both the size and quality.

Table 17. The fit performance of seven machine learning models over dataset Sensor2

Ship | Model R2® R2(test)© | MSE RMSE (t/day) | MAE (t/day) M(f;f))E
ET 1.000 0.969 4371 0.306 0.166 0.263

GB 0.999 0.969 13.092 0.492 0.301 0.474

LB 0.996 0.965 46.974 1.021 0.694 1.089

S5 ANN 0.923 0.917 860.785 4.545 3.229 4.946
RF 0.995 0.965 60.053 1.200 0.626 0.975

SVM 0.987 0.963 141.353 1.838 1.254 1.943

XG 0.999 0.966 13.331 0.529 0.350 0.548

ET 1.000 0.977 5.862 0.326 0.211 0.281

GB 0.999 0.976 15.356 0.558 0.376 0.507

LB 0.997 0.973 72.018 1.284 0.939 1.254

S6 ANN 0.935 0.931 1372.573 5.739 4.260 5.594
RF 0.996 0.973 89.147 1.462 0.936 1.227

SVM 0.989 0.972 237.134 2.384 1.851 2.444

XG 0.999 0.975 24.510 0.740 0.517 0.690

2 R? for training set.
b R2 for test set.
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8.3.4 Relative | mportance of Each Determinant to Ship Fuel Efficiency

A decision tree-based model possesses a good interpretability in explaining the relative importance
of input variables of the model (features of the dataset) to the output/target variable. Therefore, over the
best dataset identified, Sensor2, decision tree models, including ET, GB, XG, and RF are used to
analyze the relative importance of each determinant (feature/input variable) to fuel consumption rate
(the output/target variable). The results are shown in Figure 22.

Figure 22 shows the consistent results of four decision tree-based models towards the importance
of relevant factors for ship fuel efficiency. Most results are also consistent with the findings in Section
6 with voyage report data and meteorological data. First, sailing speed is the most significant
determinant of a ship’s fuel efficiency. Second, the impact of draft/displacement (relative importance:
around 0.06) is much lower than that of many factors about sea and weather conditions such as wind or
waves, and of course cannot compete with the total impact of weather and sea conditions. Third, trim’s
impact is not negligible, whose relative importance is between 0.03 and 0.05, which justifies the
necessity of conducting trim optimization in the shipping industry.

Some results do not fully agree with those from Section 6. First, wind plays the most critical role
in weather/sea conditions whose importance reaches around 0.2 if wind speed and wind direction are
both considered. Specifically, the importance of wind to ship fuel efficiency is higher than waves
(relative importance: around 0.15 totaling the values of three relevant variables). This is not surprising
because wind contributes to wind waves as well as air resistance which is particularly significant for a
containership with containers on the deck. Second, the importance of sea currents revealed by this study,
roughly from 0.05 to 1.0, is higher than that found by Section 6. Third, sea water temperature owns the
least importance at 0.03-0.05. Compared to Section 6, the importances of sea currents and sea water
temperture may be more convincing for seafarers.

Overall, all the three parts of our studies (DFS1 in Section 6, DFS2 in Section 7, and DFS3 in
Section 8) demonstrate consistent results regarding the importance of these determinants/variables to
ship fuel efficiency, including the most significant role of sailing speed, higher importance of weather
and sea conditions than draft/displacement, and the minor but nonnegligible impact of trim. Regarding
the inconsistent results of this study with DFS1 in Section 6 on the relative importances of wind, waves,
sea currents, and sea water temperature, the superiority of sensor data to voyage report data in data size
and quality makes the results of this study more convincing.

(a) ET model.




(b) GB model.

(c) XG model.

(d) RF model.

Figure 22. The average relative importance of model’s input variables (dataset features) with
DFS3




8.3.5 A Rolling Horizon Approach in Practice

The above experiments adopted sensor data of about 6 months, with the data of about 5 months
(80%) for training, and the data of about 1 month (20%) for testing. Given the decent size and quality
of sensor data and the proven good performances of ML models in above experiments, one may ask a
question ‘how much sensor data is needed to achieve good fit and generalization preformance in
practice?’

The most possible application scenario in practice will be a rolling horizon approach. For instance,
in a “3-month training + 1-month test/application” scenario, our sensor data from May to November
might be involved in four trainings and four tests/applications if a rolling horizon principle is adopted.
First, we utilize three-month data of May, June, and July to train the model (Model 1), and Model 1 will
be adopted in the whole month of August at sea. Once August ends and actual data in August is
accumulated/realized, we can verify the performance of Model 1 for August. This is equivalent to using
the data of May, June, and July for training and the data of August for testing. Second, when time comes
to the very beginning of September, we can utilize the data of most recent three months (June, July, and
August) to train the model and obtain a new Model 2. Then we apply/test Model 2 in the whole
September. Similarly, data for July, August, and September will produce a new Model 3 and October
will verify/apply Model 3. At last, a new Model 4 is obtained using the data of August, September, and
October, and applied/tested in November. Table 18 summarizes this rolling horizon process.

Table 18. A rolling horizon process for a “3-month training + 1-month test/applicatoin”
scenario with sensor data from May to November

Data for training Model Time for
trained application
(data for test)
RollingSetl | 1% rolling horizon May, June, July Model 1 August
RollingSet2 | 2™ rolling horizon June, July, August Model 2 September
RollingSet3 | 3™ rolling horizon July, August, September Model 3 October
RollingSet4 | 4" rolling horizon | August, September, October | Model 4 November

In a “3-month training + 1-month test/applicatoin” scenario, we report in Figure 23 the
performances of ET, GB and XG in a rolling horizon process for ships S5 and S6. Similarly, a “2-month
training + 1-month test/applicatoin” scenario or a “l-month training + 1-month test/applicatoin”
scenario is also possible. The corresponding results are reported in Appendices (Figures A1, A2, A3
and A4).

Figures 23, A1, A2, A3 and A4 all reveal rather high R? values for training sets, but unacceptable
R? values for test sets (application periods). The R? values on test sets (application periods) can be lower
than 0.5 and even negative. This indicates that none of “3-month training + 1-month test/applicatoin”,
“2-month training + 1-month test/application” and “l-month training + 1-month test/application”
rolling horizon strategies is acceptable in practice.

By contrasting this finding and the good performance of ML models in Sections 8.3.2 and 8.3.3,
for industry applications, we recommend using the sensor data of the most recent 5 months for model
training, and the trained model can be applied in the coming one month, if a rolling horizon approach
is adopted. Due to the unavailability of more sensor data, we cannot conduct more comparison
experiments regarding the rolling horizon approach and make the recommended strategy more
underpinned by additional experimental results. This is a limitation of this study.
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8.4 Summary

This study fuses sensor data and meteorological data for the purpose of improving the accuracy of
ML models that quantify ship fuel consumption rate based on sailing speed, draft, trim, weather
conditions, and sea conditions. The best dataset found, Sensor2, reveals the benefits of combing sensor
data and meteorological data. Experiments with two 9,200-TEU containerships show that compared to
using sensor data as the sole data source, fusing sensor data and meteorological data will improve the
fit performance of all ML models. The best ML models found are consistent with our previous studies
in Sections 6 and 7, including ET, GB and XG. Given the best dataset Sensor2, their R? values over the
training set are 0.999 or 1.000, and their R? values over the test set are all above 0.966. Their fit errors
with RMSE values are below 0.75 ton/day, and with MAE below 0.52 ton/day. These promising results
are well beyond the requirements of most industry applications for ship fuel efficiency analysis. We also
verify the applicability of the selected datasets and ML models in a rolling horizon approach, and
conjecture that a rolling horizon strategy of “5-month training + 1-month test/applicatoin” could work
well in practice and sensor data of less than five months could be insufficient to train ML models.

In the data fusion approach proposed by this study, the information from sensor data about
timestamp, geographical positions, and ship heading plays a critical role in retrieving weather and sea
condition information from meteorological data. In Section 7 with DFS2, the information from AIS data
about timestamp, geographical positions, and ship heading plays the same role. One may claim that
DFS2 in Section 7 can substitute sensor data for AIS data. This is correct in principle, but we should
realize that not every containership has a good sensor system. However, AIS data is always available
for shipping companies.

9. Conclusions and Recommendations

9.1 Conclusions

With promotions of IMO and governmental organizations, the shipping industry has been
implementing operational measures to save bunker fuel and mitigate emissions from ships, including
sailing speed optimization, trim optimization, weather routing, and the virtual arrival policy. Many
frustrations have been emerging during the process of implementation of these measures. These
frustrations are boiled down, if not fully, to how we can quantify the synergetic contributions of many
factors (speed, draft/displacement, trim, weather conditions, sea conditions) on a ship’s bunker fuel
consumption rate. A latest review paper, Yan et al. (2021), points out that the basis of all operational
measures for ship bunker fuel savings and emission mitigation is quantitatively modeling the
relationship between fuel consumption rate and many determinants, including sailing speed,
draft/displacement, trim, weather conditions, and sea conditions. This project addresses this theoretical
challenge that restricts the implementation of energy-efficient operational measures by investigating the
complementary roles of different data sources available to a shipping company, fusing these data sources,
and employing state-of-the-art machine learning techniques.

We collected voyage report data and sensor data of eight 8,100-TEU to 14,000-TEU
containerships from a global shipping company, purchased the AIS data of these ships from
MarineTraffic with the financial support of IAMU, and downloaded meteorological data from
European Centre for Medium-range Weather Forecasts (ECMWF) and Copernicus Marine Service
(CMEMS). Based on the information contained in these four data sources, we designated three data
fusion solutions: DFS1 fuses voyage report data and meteorological data, by considering the inaccurate
information of weather and sea conditions recorded by voyage report; DFS2 further fuses AIS data into
voyage report data and meteorological data because AIS data helps find the actual sailing trajectory of




the ship and thus retrieve more accurate information of weather and sea conditions from meteorological
data; DFS3 approaches sensor data as the main data source of a ship’s fuel consumption rate, and
overcomes the limitation of sensor data by taking advantage of the complete information of weather and
sea conditions contained in meteorological data. For each of the data fusion solutions, eight to nine
datasets are constructed.

Over these datasets from three data fusion solutions, a large range of widely adopted machine
learning models were experimented with, including decision tree-based models, artificial neural network
(ANN), support vector machine (SVM), ridge regression (Ridge), and LASSO. Tree-based models
include the basic decision tree (DT) model and models produced by two ensemble strategies: Extremely
randomized trees (ET) and random forest (RF) from the bagging ensemble strategy; AdaBoost (AB),
gradient tree boosting (GB), XGBoost (XG), and LightGBM (LB) from the boosting ensemble strategy.
During the experiments with these machine learning models, the impacts of data normalization,
hyperparameter optimization, and the randomness in splitting training sets and test sets are well
addressed.

Extensive experiments were conducted to answer three research questions regarding the choice of
datasets from three data fusion solutions and the choice of machine learning models. A voting scheme
is developed to break down the impacts of dataset choice and model choice. When dataset choice is
considered, the original voyage report dataset Set1 has a decent quality for ship fuel efficiency modeling;
if more effort is paid to fuse voyage report data and meteorological data, data quality improves slightly
and Set3precise can be adopted. When AIS data is available, further including AIS data might also be
beneficial, which suggests the adoption of the dataset Al S5yrecise. Overall, the best datasets found with
DFS1 and DFS2, including Set1, Set3yrecise, and Al SS5predise, ensure accurate fit performances of best ML
models: R? on the training set is above 0.96 and even reaches 0.99 to 1.00, and R? on the test set is
between 0.74 and 0.90; the fit errors measured by RMSE and MAE are between 0.5 and 4.5 ton/day.
When sensor data, rather than voyage report data, is used as the main data source of ship bunker fuel
consumption analysis, it will elevate the modeling accuracy to a higher level, possibly the highest level
if meteorological data is fused in. With DFS3, given the best dataset Sensor2, best ML models achieve
their R? values of over the training set at 0.999 or 1.000, and their R* values over the test set are all
above 0.966. Their fit errors with RMSE values are below 0.75 ton/day, and with MAE below 0.52
ton/day.

As far as ML model choice is concerned, we recommend the installation of four decision-tree based
models including ET, AB, GB, and XG because they usually possess the highest fit performance and
good generalization performance. Their performances are also quite robust against random splits of a
dataset into training and test sets. Our experiments with DFS1, DFS2, and DFS2 reach consistent
findings about the performances of ML models and rank their performances into four tiers.

e Tier 1: ET, AB, GB, and XG.
e Tier2: RF, LB

e Tier 3: DT, SVM, ANN

e Tier 4: Ridge, LASSO.

9.2 Recommendations for I ndustry Applications

Voyage report data, meteorological data, sensor data, and AIS data are the major data sources that
can be utilized by a shipping company and other industry stakeholders for ship energy efficiency
analysis. These four data sources have different but complementary information for ship fuel efficiency



analysis. The first insight delivered by this project is fusing these data sources is usually beneficial in
terms of accuracy of ship fuel efficiency modeling.

Regarding dataset selection, voyage report data is usually sufficient for many industry applications
based on ship energy/emission analysis. Fusing meteorological data into voyage report generally slightly
improve the accuracy of ship fuel efficiency models. Furthermore, if AIS data is available, it describes
the sailing trajectory of the ship and thus helps find more accurate information of weather and sea
conditions the ship sailed through. Substituting this accurate information for the snapshotted weather
and sea condition data in voyage report generally improves the performance of ship fuel efficiency
models based on voyage report.

However, there is no guarantee that fusing AIS data and meteorological data into voyage report data
must improve the performance of ship fuel efficiency analysis model. This can be explained by the fact
that the snapshotted information of weather and sea conditions in voyage report data may have been
representative, though to an unknown extent, and by the fact that accurate weather and sea condition
data on the waypoints does not necessarily lead to a more accurate estimation of daily average weather
and sea conditions the ship sailed through. This is a finding that might contract the imagination and
intuition of industry professionals.

The reported fit and generalization performances of ET, AB, GB and XG (summarized in Section
7.4) are probably the highest level of accuracy we could achieve to model a mega containership’s fuel
consumption rate, if voyage report data is used as the main source of bunker fuel consumption. The
main reasons why it is difficult, if not impossible, to further improve the modeling accuracy boil down
to the fact that voyage report data reports the “daily” bunker fuel consumption of a ship, and this data
granularity (“daily”) restricts the model performance. However, this modelling accuracy is sufficient for
many industry applications and energy-efficient operational measures for shipping companies, including
sailing speed optimization, weather routing, and virtual arrivals.

The limitation of voyage report data can be overcome by sensor data. When sensor data is used as
the main data source of ship bunker fuel efficiency analysis, it elevates the modeling accuracy to a higher
level, possibly the highest level if meteorological data is fused in. With DFS3, given the best dataset
Sensor2, best ML models achieve their R? values of over the training set at 0.999 or 1.000, and their R?
values over the test set are all above 0.966. Their fit errors with RMSE values are below 0.75 ton/day,
and with MAE below 0.52 ton/day. The highly accurate performance of ML models with sensor data
and meteorological data justifies their application in trim optimization. Our discussion with industry
professionals conveys the information that it would be hard to imagine sensor data with the resolution
of 15 minutes can be used in speed optimization, weather routing, and virtual arrivals, if not impossible.
ML models with sensor data and meteorological data can be trained and utilized in a rolling-horizon
approach by considering the large quality of senor data. Specifically, we recommend the shipping
companies to employ the latest five-month sensor data and meteorological data to train the models and
update the models on a monthly basis.

As far as ML model choice is concerned, we recommend the installation of four decision-tree based
models including ET, AB, GB, and XG because they usually possess the highest fit performance and
good generalization performance. Our experiments with DFS1, DFS2, and DFS2 reach consistent
findings about the performances of ML models and rank their performances into four tiers. It would be
safe for industry applications to only consider the ML models in Tier 1, including ET, AB, GB, and XG.

We summarize our recommendations on industry applications in Table 19. The importance of
operational energy-saving measures can be ranked in the following

Speed optimization and virtual arrival > weather routing > trim optimization.




Our quantitative results in Sections 6.3.5 and 8.3.4 about the relative importance of determinants of ship
fuel efficiency rate show that sailing speed is the first most important factor, and weather and sea
conditions as a whole represent the second most significant factor. The impact of trim is the minor but
nonnegligible. The impact of displacement/draft because of cargo load and ballast water can be ignored
in reality, because it is well dominated by that of weather and sea conditions and largely outweighed by
the profit margin of carrying more cargoes.

Apart from the applications in Table 19, we also recommend that industry stakeholders make more
efforts on software/system development, based on our findings and Python code infrastructure published
in GitHub website. Regulators such as IMO and EU can also improve their understanding of ship
fuel/emission efficiency through the findings in this data-driven project.

Table 19. Summary of recommendations for industry applications

Industry applications o Sailing speed optimization Trim optimization

o Weather routing

e Virtual (just-in-time) arrival

o Shipping companies

e Weather information service
providers (WISPs)

o Ship classification societies
(such as ClassNK)

o Shipping associations (such as
BIMCO)

* DFS1: Voyage report data +
meteorological data

* DFS2: Voyage report data +
meteorological data + AIS data

Industry stakeholders Shipping companies

DFS3: sensor data +
meteorological data

Recommended data
sources and datasets

Recommended models

Extremely randomized trees
(ETs), Gradient tree boosting
(GB), or XGBoost (XG)

Extremely randomized trees
(ETs), Gradient tree boosting
(GB), or XGBoost (XG)

9.3 Limitations and Future Studies
The studies of this project have the following limitations which can be addressed in future studies.

e This project only considers containerships but not other ship types such as bulk ships and oil tankers.

e This project models the fuel consumption rate as the output of a ML model. If engine RPM is
utilized as the output feature, the built ML models will enable the ship captain to determine required
engine RPM when sailing the ship with different speed requirements, displacement, and weather
and sea conditions.

e ANN is considered as the main approach of deep learning and has many variants with different
model structures. This project only considers the traditional three-layer feedforward network.
Future studies can investigate the performance of other variants of ANN.

e In Section 8.3.5, due to the unavailability of more sensor data, we could not conduct more
comparison experiments regarding the rolling horizon approach and made the recommended
strategy more underpinned by additional experimental results.




The data fusion approach of DFS3 in Section 8 depends on the structure of sensor data. If the sensor
data from another shipping company is used and the structure of their sensor data is different from
this study, the data fusion approach needs to be revised. For instance, we also made a
communication with another global shipping company, and their sample sensor data shared to us
has a different structure. Their sensor data contains features about wind, waves, and sea currents,
but their information on wind is less complete than the sensor data used in this study. Neither of
their sensor data and the sensor data used in this study includes the information of wave period and
sea water temperature.

This project is driven by the data collected from manned mega containerships. During the design
of an autonomous ship, the designer will have to develop automated algorithms for the ship’s sailing
speed optimization and weather routing. In future studies, more sensor data can be collected from
autonamous ships which generally have much smaller sizes than the mega containerships
considered by this project. Accordingly, it would be interesting to develop data fusion apporaches
for these data and experiment on the performance of ML models.

AMU
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Appendix

Table Al. The fit performance of eleven machine learning models for ship S2 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.833 0.668 113.854 10.580 7.934 8.951
Set2predise 0.820 0.591 113.281 10.459 7.954 9.321
Set2fuzy 0.871 0.612 80.754 8.724 6.480 7.612
Set3precise 0.820 0.589 112.089 10.461 7.916 9.230

DT Set3huzy 0.819 0.575 112.765 10.428 7.896 9.219
Setdprecise 0.808 0.595 120.097 10.818 8.149 9.543
Setliuzy 0.814 0.591 116.912 10.691 8.068 9.324
SetSprecise 0.823 0.615 110.287 10.266 7.739 9.008
SetShuzy 0.833 0.596 103.989 9.909 7.434 8.724
Sl 0.971 0.786 19.857 4.055 2.986 3.306
St 2precise 0.960 0.755 24.360 4.399 3.253 3.686
Set2iuzy 0.958 0.757 25.878 4.553 3.366 3.839
Set3precise 0.974 0.765 15.842 3.377 2.445 2.780
ET Set3huzy 0.970 0.763 18.735 3.789 2.711 3.086
Setdprecise 0.977 0.764 14.537 3.128 2.237 2.530
Setliuzy 0.966 0.753 20.670 3.685 2.710 3.126
SetSprecise 0.962 0.761 23.530 4.202 3.100 3.525
StSnuzy 0.973 0.759 16.740 3.553 2.608 2.959
Sl 0.959 0.766 27.622 5.205 3.750 4.227
St 2precise 0.953 0.739 29.359 5.350 3.843 4.436
Set2iuzy 0.957 0.744 26.791 5.118 3.763 4.381
Set3precise 0.950 0.740 31.494 5.541 4.007 4.662
RF SetShuzy 0.946 0.743 33.716 5.699 4.096 4.743
Setdprecise 0.957 0.740 26.572 5.118 3.734 4.336
Setliuzy 0.947 0.743 33.116 5.695 4.054 4.702
SetSprecise 0.953 0.739 29.568 5.382 3.900 4.537
SetSnuzy 0.955 0.750 28.280 5.224 3.773 4.393
Sl 0.968 0.762 21.779 4.305 3.609 4.143
Set2predise 0.964 0.732 22.762 4.602 3.941 4.548
Set2uzy 0.959 0.732 25.577 4.816 4.018 4.635
Set3precise 0.961 0.743 24.755 4.778 4.073 4.729
AB SetShuzy 0.962 0.739 23.645 4.672 3.976 4.617
Setdprecise 0.978 0.739 13.828 3.528 2.989 3.464
Setliuzy 0.972 0.732 17.180 3.860 3.257 3.764
SetSprecise 0.970 0.735 18.789 4.114 3.503 4.068
SetSnuzy 0.972 0.737 17.302 3.979 3.369 3.948
Setl 0.964 0.781 24.457 4.564 3.429 3.793
SetZprecise 0.984 0.756 10.221 2.615 1.849 2.072
Set2huzy 0.987 0.750 8.325 2.190 1.584 1.767
Set3precise 0.992 0.760 5.008 1.817 1.234 1.378
GB Set3huzy 0.985 0.762 9.472 2472 1.716 1.938
Setdprecise 0.990 0.763 6.143 1.963 1.364 1.529
Setduzy 0.990 0.755 6.254 1.885 1.401 1.570
StSprecise 0.975 0.747 15.364 3.270 2.336 2.634
SetSnuzy 0.976 0.756 14.869 3.182 2.389 2.720
Setl 0.975 0.781 16.733 3.503 2.631 2.868
St 2precise 0.985 0.759 9.566 2.542 1.691 1.837
XG Set2huzy 0.990 0.755 6.058 2.038 1.246 1.328
Set3precise 0.991 0.765 5.421 1.949 1.186 1.277
Set3huzy 0.982 0.759 11.047 3.003 1.792 1.921
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setdprecise 0.984 0.770 10.314 2.587 1.638 1.760

Sethiuzy 0.988 0.761 7.480 2.197 1.362 1.457

SetSprecise 0.967 0.754 21.190 4.015 2.689 2.956

SetSuzy 0.977 0.755 14.591 3.195 2.170 2.360

Setl 0.946 0.761 36.850 5.784 4.429 4.834

Set2precise 0.981 0.736 11.640 2.940 2.158 2.384

Set2nuzy 0.981 0.727 12.277 3.145 2.224 2.455
Set3precise 0.980 0.748 12.589 3.053 2.179 2.442

LB St By 0.982 0.741 11.425 3.003 2.145 2.400
Setdprecise 0.975 0.753 15.660 3.469 2.582 2.863

Sethiuzy 0.976 0.737 14911 3.522 2.568 2.839

SetSprecise 0.974 0.724 16.238 3.488 2.447 2.769

Setbruzy 0.971 0.731 18.560 3.787 2.594 2.943

Sl 0.848 0.797 103.306 10.147 7.260 7.779

St 2precise 0.868 0.812 82.693 9.063 6.443 7.021

Set2nuzy 0.868 0.802 82.818 9.066 6.404 7.072

Set3precise 0.864 0.812 84.860 9.176 6.608 7.210

SVM Set3ruzy 0.871 0.799 81.178 8.918 6.364 7.014
Setdprecise 0.870 0.814 81.122 8.974 6.442 7.034

Setliuzy 0.870 0.808 81.347 8.990 6.402 7.062

St5precise 0.859 0.807 88.173 9.339 6.736 7.391

Setbruzy 0.867 0.795 83.747 9.040 6.466 7.202

Satl 0.876 0.787 84.367 9.093 6.935 7.682

Set2precise 0.907 0.800 57.855 7.489 5.695 6.295

Set2nuzy 0.897 0.789 64.406 7.958 6.055 6.742

Set3precise 0.908 0.791 56.693 7.365 5.581 6.171

ANN Set3ruzy 0.893 0.803 67.203 8.110 6.127 6.837
Setprecise 0.908 0.803 56.949 7.439 5.643 6.227

Setliuzy 0.892 0.805 67.986 8.160 6.176 6.905

SetSpredise 0.909 0.798 56.575 7.417 5.624 6.182

Setbruzy 0.893 0.787 66.436 8.051 6.101 6.783

Satl 0.822 0.786 121.419 11.016 8.454 9.312

Set2precise 0.820 0.801 112.767 10.614 8.029 9.059

Set2nuzy 0.813 0.791 116.890 10.806 8.083 9.148
Set3precise 0.826 0.802 108.847 10.429 8.011 9.055

Ridge Set3ruzy 0.823 0.798 110.559 10.511 8.004 9.066
Setlprecise 0.825 0.803 109.502 10.460 8.011 9.081

Setliuzy 0.821 0.798 112.098 10.584 8.023 9.111
SetSprecise 0.821 0.804 112.183 10.587 8.050 9.089

SetSnuzy 0.815 0.796 115.730 10.753 8.099 9.178

Setl 0.822 0.785 121.508 11.020 8.471 9.331
Set2precise 0.819 0.798 113.218 10.635 8.023 9.028

Set2nuzy 0.811 0.786 117.999 10.857 8.090 9.146

Set3precise 0.824 0.796 110.162 10.492 8.034 9.042

LASSO Set3uzy 0.821 0.797 112.336 10.595 8.043 9.099
Setlprecise 0.824 0.800 110.115 10.490 8.007 9.039

Setliuzy 0.820 0.795 112.895 10.621 8.032 9.095

SetBprecise 0.820 0.801 112.578 10.606 8.047 9.060

SetSuzy 0.815 0.796 115.774 10.755 8.086 9.150
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Table A2. The fit performance of eleven machine learning models for ship S3 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.857 0.684 105.672 10.125 7.259 8.643
Set2predise 0.853 0.713 107.107 10.167 7.422 8.762
Set2fuzy 0.845 0.700 112.697 10.432 7.586 9.080
Set3precise 0.865 0.684 98.572 9.705 7.042 8.343

DT Set3huzy 0.868 0.692 95.656 9.586 6.903 8.258
Setdprecise 0.864 0.694 99.016 9.741 7.126 8.471
Setliuzy 0.874 0.678 90.962 9.304 6.662 7.963
SetSprecise 0.870 0.701 94.794 9.586 6.956 8.295
SetShuzy 0.858 0.695 102.704 9.931 7.215 8.621
Sl 0.977 0.800 17.021 3.911 2.462 2.964
Set2predise 0.973 0.821 19.352 3.820 2.270 2.890
Set2fuzy 0.969 0.820 22.459 4.479 2.719 3.433
Set3precise 0.985 0.821 10.758 2.846 1.716 2.181
ET Set3huzy 0.986 0.818 10.342 2.391 1.438 1.823
Setdprecise 0.975 0.821 18.085 3.943 2.304 2.928
Setliuzy 0.976 0.819 17.269 3.827 2.328 2.940
SetSprecise 0.984 0.830 11.712 2.940 1.661 2.141
SetSnuzy 0.985 0.824 11.150 2.920 1.767 2.250
Sl 0.960 0.768 29.573 5.369 3.497 4.234
Set2predise 0.959 0.809 29.986 5.388 3.453 4.290
Set2fuzy 0.963 0.801 27.032 5.170 3.369 4.169
Set3precise 0.956 0.802 31.781 5.576 3.587 4.463
RF SetShuzy 0.952 0.805 34.613 5.786 3.654 4.563
Setdprecise 0.959 0.804 29.892 5.406 3.491 4.325
Setliuzy 0.952 0.802 34.739 5.778 3.694 4.603
SetSprecise 0.958 0.812 30.199 5.441 3.473 4.321
SetSnuzy 0.959 0.806 29.588 5.388 3.409 4.241
Sl 0.988 0.798 9.177 2.942 2.371 2.718
Set2predise 0.986 0.810 10.039 2.915 2.240 2.541
Set2uzy 0.984 0.805 11.278 3.202 2.508 2.796
Set3precise 0.991 0.812 6.328 2.183 1.712 1.998
AB SetShuzy 0.992 0.807 5.598 2.100 1.542 1.789
Setdprecise 0.995 0.814 3.875 1.811 1.356 1.550
Setliuzy 0.992 0.801 5.657 2.166 1.647 1.869
SetSprecise 0.994 0.813 4.175 1.738 1.313 1.514
SetSnuzy 0.996 0.797 3.048 1.491 1.070 1.230
Setl 0.962 0.776 28.220 4.726 3.221 3.841
Set2precise 0.968 0.814 23.569 4.167 2.747 3412
Set2huzy 0.948 0.813 37.767 5.792 3.874 4.811
Set3precise 0.964 0.819 26.559 4.694 2.836 3.642
GB Set3huzy 0.968 0.812 23.652 4.569 2.741 3.501
Setdprecise 0.956 0.818 32.004 5.489 3.562 4.440
Setduzy 0.956 0.810 32.023 5.280 3.217 4.123
StSprecise 0.976 0.819 17.731 3.499 2.207 2.765
SetSnuzy 0.969 0.816 22.829 4.478 3.030 3.732
Setl 0.959 0.778 30.013 4.738 3.214 3.744
SetZprecise 0.941 0.811 42.884 6.013 3.809 4.801
XG Set2huzy 0.950 0.799 36.417 5.386 3.565 4.427
Set3precise 0.961 0.810 28.714 5.030 3.052 3.828
Set3huzy 0.962 0.809 27.987 4.971 3.024 3.802
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setdprecise 0.952 0.816 34.801 5.579 3.556 4.392

Sethiuzy 0.949 0.807 37.325 5.970 3.839 4.756

SetSprecise 0.951 0.816 35428 5.466 3.558 4.432

SetSuzy 0.953 0.808 34.093 5.267 3.457 4.250

Setl 0.935 0.766 48.608 6.560 4.506 5.448

Set2precise 0.946 0.809 39.482 5.955 3.895 4.905

Set2nuzy 0.921 0.799 57.989 7.204 4.865 6.100

Set3precise 0.947 0.804 38.795 5.845 3.853 4.853

LB St By 0.952 0.801 35.030 5.577 3.723 4.654
Setdprecise 0.951 0.805 35.768 5.641 3.702 4.652

Sethiuzy 0.935 0.803 47.096 6.576 4.433 5.520

SetSprecise 0.963 0.808 26.595 4.681 2.977 3.758

Setbruzy 0.939 0.798 43912 6.098 4.029 5.143

Sl 0.812 0.791 138.669 11.753 7.557 8.957

St 2precise 0.837 0.823 117.826 10.819 6.698 8.237

Set2nuzy 0.830 0.818 123.105 11.072 6.843 8.436
Set3precise 0.844 0.820 113.000 10.591 6.627 8.167

SVM Set3ruzy 0.847 0.817 111.184 10.490 6.551 8.120
Setdprecise 0.844 0.822 113.090 10.598 6.624 8.169

Setliuzy 0.843 0.821 113.745 10.618 6.643 8.199

St5precise 0.840 0.823 115.818 10.727 6.701 8.227

Setbruzy 0.833 0.821 121.038 10.973 6.888 8.472

Satl 0.829 0.780 126.769 11.217 7.780 9.353

Set2precise 0.865 0.809 98.002 9.850 6.647 8.181

Set2nuzy 0.859 0.807 102.467 10.070 6.665 8.284

Set3precise 0.874 0.798 91.583 9.475 6.480 7.992

ANN Set3ruzy 0.859 0.796 101.857 10.026 6.907 8.541
Setlprecise 0.861 0.800 100.566 9.972 6.828 8.394

Setliuzy 0.848 0.796 110.236 10.430 7.158 8.877

SetSprecise 0.865 0.809 97.761 9.821 6.634 8.116

Setbruzy 0.853 0.801 106.070 10.237 6.811 8.423

Satl 0.780 0.778 162.676 12.739 9.007 11.114

Set2precise 0.792 0.799 150.342 12.247 8.523 10.908

Set2nuzy 0.790 0.798 151.889 12.310 8.513 10.899

Set3precise 0.801 0.796 144.061 11.987 8.329 10.615

Ridge Set3ruzy 0.801 0.797 143.736 11.974 8.307 10.617
Setprecise 0.798 0.797 146.525 12.089 8.366 10.721

Setliuzy 0.798 0.798 145.947 12.066 8.335 10.674

SetSprecise 0.795 0.803 148.003 12.151 8.436 10.765

SetSnuzy 0.793 0.802 149.528 12.214 8.459 10.815

Setl 0.779 0.778 163.445 12.769 9.011 11.128

Set2precise 0.792 0.798 150.396 12.249 8.514 10.895

Set2nuzy 0.790 0.797 151.947 12.313 8.502 10.883

Set3precise 0.799 0.796 145.425 12.043 8.323 10.619

LASSO Set3uzy 0.799 0.798 145.550 12.049 8.307 10.630
Setprecise 0.797 0.796 147.092 12.112 8.361 10.718

Setliuzy 0.798 0.796 146.291 12.080 8.324 10.657

SetBprecise 0.795 0.803 148.077 12.154 8.433 10.758

SetSuzy 0.793 0.801 149.538 12.215 8.448 10.795
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Table A3. The fit performance of eleven machine learning models for ship S4 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.906 0.758 81.312 8.851 6.363 6.681
Set2predise 0.926 0.750 59.829 7.503 5.663 6.124
Set2fuzy 0.921 0.759 63.603 7.812 5.886 6.341
Set3precise 0916 0.746 68.063 8.094 6.036 6.523

DT Set3huzy 0.921 0.755 63.698 7.776 5.796 6.220
Setdprecise 0.917 0.758 67.295 7.920 5.904 6.372
Setliuzy 0.928 0.771 58.562 7.517 5.638 6.059
SetSprecise 0.905 0.739 76.918 8.473 6.344 6.864
SetShuzy 0918 0.764 66.324 7.897 5.900 6.326
Sl 0.988 0.858 10.120 2.625 1.778 1.862
St 2precise 0.996 0.865 2.961 1.362 0.957 1.036
Set2fuzy 0.998 0.862 1.882 1.077 0.738 0.796
Set3precise 0.998 0.872 1.434 0.901 0.627 0.687
ET Set3huzy 0.998 0.870 1.957 1.022 0.713 0.777
Setdprecise 0.997 0.871 2.141 1.101 0.778 0.844
Setliuzy 0.997 0.867 2.092 0.994 0.710 0.779
SetSprecise 0.999 0.875 1.183 0.904 0.623 0.675
SetSnuzy 0.999 0.871 0.933 0.704 0.479 0.524
Sl 0.974 0.848 22.794 4.752 3.335 3.501
St 2precise 0.977 0.855 18.989 4.350 3.226 3.528
Set2iuzy 0.975 0.852 20.670 4.529 3.344 3.673
Set3precise 0.975 0.853 20.349 4.497 3.331 3.618
RF SetShuzy 0.974 0.856 20.789 4.535 3.341 3.631
Setdprecise 0.974 0.855 21.029 4.568 3.359 3.660
Setliuzy 0.976 0.855 19.273 4.381 3.235 3.533
SetSprecise 0.975 0.857 20.143 4.472 3.320 3.609
SetSnuzy 0.975 0.859 20.015 4.457 3.275 3.570
Sl 0.980 0.843 17.332 3.939 3.283 3.654
St 2precise 0.981 0.855 15.155 3.560 2.938 3.255
Set2uzy 0.980 0.856 16.402 3.758 3.082 3.408
Set3precise 0.986 0.865 11.021 3.144 2.591 2.905
AB SetShuzy 0.992 0.868 6.360 2.277 1.815 2.053
Setdprecise 0.992 0.864 6.179 2.258 1.821 2.046
Setliuzy 0.992 0.864 6.345 2.272 1.806 2.021
SetSprecise 0.991 0.864 7.066 2.371 1.903 2.139
SetSnuzy 0.993 0.862 5.401 2.070 1.614 1.806
Setl 0.977 0.851 19.591 4.196 3.176 3.352
Set2precise 0.986 0.863 11.541 2.974 2.340 2.505
Set2huzy 0.985 0.858 12.254 2.929 2.287 2.437
Set3precise 0.989 0.866 8.845 2.500 1.838 1.957
GB Set3huzy 0.986 0.869 11.433 2.985 2.229 2.395
Setdprecise 0.991 0.870 7.282 2.380 1.819 1.934
Setduzy 0.990 0.867 8.073 2.523 1.913 2.039
StSprecise 0.990 0.867 7.786 2.438 1.819 1.963
SetSnuzy 0.986 0.868 11.156 2.861 2.190 2.362
Setl 0.977 0.858 19.657 4.126 3.068 3.185
SetZprecise 0.993 0.860 5.385 1.929 1.448 1.532
XG Set2huzy 0.993 0.864 5.871 2.111 1.576 1.681
Set3precise 0.995 0.869 3.758 1.585 1.140 1.201
Set3huzy 0.993 0.874 5.620 2.167 1.535 1.623
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setdprecise 0.994 0.871 4.730 1.636 1.209 1.273

Sethiuzy 0.990 0.868 7.942 2.402 1.785 1.886

SetSprecise 0.993 0.869 5.929 1.909 1.441 1.535

SetSnuzy 0.986 0.871 11.464 2.905 2.212 2.369

Setl 0.968 0.844 28.153 5.010 3.861 4.044

Set2precise 0.980 0.850 15.758 3.612 2.794 2.972

Set2nuzy 0.978 0.851 17.859 3.894 3.036 3.245
Set3precise 0.987 0.855 10.943 2.871 2.200 2.340

LB St By 0.987 0.861 10.620 2.951 2.264 2.432
Setdprecise 0.986 0.857 11.242 2.921 2.241 2.385

Sethiuzy 0.977 0.863 18.771 4.087 3.166 3.364

SetSprecise 0.992 0.866 6.305 2.107 1.627 1.771

Setbruzy 0.987 0.868 10.615 2.972 2.300 2.509

Sl 0.906 0.842 81.874 9.015 6.318 6.374

St 2precise 0.920 0.852 64.910 8.026 5.944 6.337

Set2nuzy 0.917 0.847 67.218 8.157 5.995 6.449
Set3precise 0.921 0.857 63.718 7.972 5.848 6.146

SVM Set3ruzy 0.912 0.853 70.915 8.406 6.166 6.467
Setdprecise 0.920 0.861 64.380 8.005 5.896 6.203

Setliuzy 0.913 0.855 70.163 8.353 6.150 6.479

StSpredise 0.921 0.863 64.323 8.003 5.923 6.291

Setbruzy 0.918 0.862 66.783 8.152 6.034 6.410

Satl 0.925 0.845 65.521 8.076 6.102 6.390

Set2precise 0.936 0.848 51.520 7.145 5.561 6.025

Set2nuzy 0.939 0.851 49.215 6.999 5.433 5.884
Set3precise 0.947 0.856 42.555 6.513 5.034 5.502

ANN Set3ruzy 0.947 0.863 42.882 6.543 5.085 5.528
Setprecise 0.944 0.859 45.586 6.744 5.243 5.676

Sty 0.942 0.855 47.334 6.865 5.320 5.759

SetSpredise 0.939 0.866 49.545 7.025 5.477 5914

Setbruzy 0.933 0.865 54.535 7.374 5.737 6.216

Satl 0.825 0.821 152.631 12.351 9.343 9.548

Set2precise 0.824 0.805 142.173 11.919 9.220 9.569

Set2nuzy 0.820 0.799 145.931 12.075 9.331 9.742

Set3precise 0.833 0.811 135.334 11.629 9.033 9.406

Ridge Set3ruzy 0.828 0.806 138.677 11.771 9.128 9.537
Setlprecise 0.833 0.812 135.132 11.620 9.021 9.387

Setliuzy 0.829 0.807 138.424 11.761 9.115 9.516
SetSprecise 0.829 0.812 138.032 11.744 9.121 9.468

SEtSruzy 0.826 0.808 140.883 11.865 9.207 9.606

Setl 0.824 0.823 153.402 12.382 9.347 9.537

Set2precise 0.824 0.804 142.470 11.932 9.228 9.572

Set2nuzy 0.819 0.799 146.410 12.095 9.344 9.750

Set3precise 0.832 0.809 135.961 11.656 9.053 9.417

LASSO Set3uzy 0.826 0.806 140.683 11.856 9.181 9.580
Setlprecise 0.833 0.810 135.135 11.621 9.022 9.385

Setliuzy 0.828 0.806 139.214 11.793 9.132 9.526

SetBprecise 0.829 0.811 138.350 11.758 9.127 9.471

SetSuzy 0.825 0.807 141.337 11.884 9.215 9.611
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Table A4. The fit performance of eleven machine learning models for ship S5 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.939 0.821 33.699 5.588 4.144 6.259
Set2predise 0.938 0.795 34.454 5.745 4.239 6.417
Set2fuzy 0.935 0.810 35.970 5.952 4.463 6.795
Set3precise 0.947 0.785 29.488 5.182 3.764 5.625

DT Set3huzy 0.948 0.798 28.634 5.139 3.789 5.696
Setdprecise 0.938 0.786 34.047 5.667 4.152 6.186
Setliuzy 0.940 0.799 33.582 5.565 4.092 6.178
SetSprecise 0.937 0.799 35.019 5.784 4.241 6.345
SetShuzy 0.941 0.811 32.605 5.613 4.060 6.073
Sl 0.998 0.895 1.057 0.805 0.569 0.857
Set2predise 0.996 0.892 2.026 1.108 0.820 1.257
Set2fuzy 0.994 0.889 3.403 1.580 1.182 1.787
Set3precise 0.997 0.892 1.413 0.854 0.619 0.935
ET Set3huzy 0.997 0.891 1.821 1.076 0.784 1.184
Setdprecise 0.995 0.892 2.602 1.195 0.883 1.343
Setliuzy 0.997 0.888 1.705 0.950 0.681 1.028
SetSprecise 0.998 0.890 0.845 0.785 0.560 0.856
SetSnuzy 0.997 0.889 1.447 0.856 0.619 0.939
Sl 0.982 0.884 9.951 3.140 2.354 3.594
Set2predise 0.981 0.874 10.785 3.268 2.396 3.663
Set2fuzy 0.983 0.881 9.662 3.097 2.265 3.480
Set3precise 0.981 0.874 10.498 3.225 2.390 3.663
RF SetShuzy 0.981 0.882 10.352 3.195 2.354 3.614
Setdprecise 0.982 0.873 9.889 3.137 2.295 3.509
Setliuzy 0.981 0.880 10.422 3.210 2317 3.539
SetSprecise 0.981 0.876 10.305 3.189 2.355 3.598
SetSnuzy 0.982 0.881 10.256 3.184 2.356 3.630
Sl 0.990 0.895 5.408 2213 1.830 3.156
St 2precise 0.994 0.882 3.555 1.780 1.439 2.538
Set2uzy 0.992 0.890 4.604 1.967 1.620 2.822
Set3precise 0.995 0.886 2.543 1.525 1.209 2.217
AB SetShuzy 0.994 0.893 3.311 1.634 1.320 2.360
Setdprecise 0.994 0.882 3.462 1.734 1.393 2.479
Setliuzy 0.995 0.890 2.588 1.508 1.191 2.135
SetSprecise 0.995 0.886 2.965 1.629 1.315 2.379
SetSnuzy 0.996 0.890 2.337 1.387 1.066 1.931
Setl 0.993 0.895 3.885 1.743 1.360 2.158
SetZprecise 0.996 0.887 2.381 1.188 0.926 1.492
Set2huzy 0.990 0.888 5.618 1.854 1.419 2.233
Set3precise 0.993 0.887 3.519 1.359 1.021 1.610
GB Set3huzy 0.994 0.888 3.316 1.398 1.074 1.699
Setdprecise 0.997 0.889 1.727 1.039 0.805 1.275
Setduzy 0.995 0.891 2.928 1.162 0.867 1.355
SetSpredise 0.996 0.884 2.061 1.052 0.818 1.293
SetSnuzy 0.993 0.886 3.950 1.562 1.211 1.917
Setl 0.990 0.892 5.361 1.995 1.520 2.370
SetZprecise 0.993 0.873 3.883 1.589 1.173 1.842
XG Set2huzy 0.987 0.881 7.018 2.245 1.655 2.554
Set3precise 0.993 0.878 3.601 1.605 1.133 1.749
Set3huzy 0.989 0.888 5.924 2.046 1.490 2314
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setdprecise 0.994 0.878 3.149 1.496 1.041 1.616

Sethiuzy 0.990 0.883 5.556 2.019 1.478 2.308

SetSprecise 0.987 0.883 7.125 2.403 1.776 2.773

SetSnuzy 0.993 0.886 3.759 1.666 1.228 1.927

Setl 0.986 0.879 7.810 2.636 2.028 3.173

Set2precise 0.984 0.874 9.087 2.680 2.016 3.145

Set2nuzy 0.984 0.882 9.066 2.728 2.073 3.215
Set3precise 0.987 0.873 7.382 2.350 1.758 2.725

LB St By 0.987 0.876 7.357 2.458 1.852 2.887
Setdprecise 0.979 0.875 11.525 3.220 2.420 3.743

Sethiuzy 0.980 0.877 11.114 3.131 2.393 3.696
SetSprecise 0.984 0.871 8.646 2.662 1.998 3.104

Setbruzy 0.987 0.876 7.270 2.424 1.830 2.842

Sl 0.931 0.884 38.408 6.173 4.382 6.630

St 2precise 0.919 0.879 45.002 6.674 4.868 7.358

Set2nuzy 0.919 0.883 44.677 6.633 4.835 7.319
Set3precise 0.916 0.873 46.421 6.785 4917 7.472

SVM Set3ruzy 0.917 0.882 46.286 6.793 4.904 7.472
Setdprecise 0.915 0.876 47.018 6.840 4.985 7.541

Setliuzy 0.917 0.879 45.834 6.758 4.928 7.496

StSpredise 0.924 0.878 41.942 6.444 4.689 7.114

Setbruzy 0.921 0.880 43.746 6.591 4.771 7.252

Satl 0.926 0.886 40.737 6.373 4.900 7.545

Set2precise 0.940 0.876 33.557 5.753 4.426 6.867

Set2nuzy 0.930 0.876 38.794 6.188 4.724 7.295
Set3precise 0.935 0.879 36.157 5.956 4.544 7.075

ANN Set3ruzy 0.932 0.882 37.513 6.094 4.633 7.202
Setlprecise 0.941 0.882 32.448 5.659 4.328 6.738

Setliuzy 0.929 0.878 39.150 6.229 4.760 7.381

SetSpredise 0.928 0.876 39.757 6.269 4.802 7.409

Setbruzy 0.930 0.884 38.850 6.201 4.720 7.277

Satl 0.875 0.868 69.368 8.325 6.341 9.937

Set2precise 0.883 0.873 65.112 8.066 6.112 9.419

Set2nuzy 0.881 0.873 66.119 8.128 6.124 9.423
Set3precise 0.889 0.868 61.610 7.846 5.934 9.109

Ridge Set3ruzy 0.888 0.870 62.092 7.876 5.983 9.191
Setprecise 0.887 0.871 62.716 7.916 6.011 9.210

Setliuzy 0.886 0.870 63.240 7.949 6.063 9.298

SetSprecise 0.885 0.874 63.789 7.983 6.042 9.244

SetSnuzy 0.885 0.875 63.975 7.995 6.045 9.248

Setl 0.874 0.868 69.799 8.351 6.357 9.948
Set2precise 0.882 0.873 65.214 8.072 6.121 9.436

Set2nuzy 0.881 0.873 66.225 8.135 6.131 9.439
Set3precise 0.888 0.868 61.988 7.870 5.953 9.129

LASSO Set3uzy 0.887 0.870 62.780 7.920 6.019 9.213
Setlprecise 0.886 0.870 62.963 7.932 6.022 9.224

Setliuzy 0.886 0.871 63.365 7.957 6.070 9.298

SetBprecise 0.885 0.874 63.959 7.994 6.054 9.256

SEtSruzy 0.884 0.873 64.202 8.009 6.059 9.247
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Table AS. The fit performance of eleven machine learning models for ship S6 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.837 0.636 67.292 8.143 5917 7.777
Set2predise 0.812 0.542 77.709 8.758 6.526 8.686
Set2fuzy 0.825 0.576 72.552 8.460 6.207 8.219
Set3precise 0.832 0.576 69.684 8.275 6.119 8.113

DT Set3huzy 0.813 0.579 77.414 8.738 6.468 8.593
Setdprecise 0.852 0.530 60.986 7.701 5.653 7.536
Setliuzy 0.832 0.561 69.219 8.249 6.071 8.066
SetSprecise 0.832 0.578 69.447 8.227 6.047 8.027
SetShuzy 0.816 0.589 76.002 8.649 6.372 8.434
Sl 0.985 0.765 6.050 1.928 1.359 1.796
St 2precise 0.982 0.755 7.287 2.366 1.743 2.313
Set2iuzy 0.982 0.749 7.640 2.515 1.877 2.489
Set3precise 0.979 0.752 8.706 2.743 2.010 2.678
ET Set3huzy 0.976 0.744 9.938 2.705 1.995 2.654
Setdprecise 0.986 0.747 5.823 2.122 1.533 2.036
Setliuzy 0.973 0.743 10.997 2.925 2.161 2.860
SetSprecise 0.986 0.750 5.796 2.088 1.517 2.009
SetSnuzy 0.971 0.735 12.056 3.189 2.388 3.162
Sl 0.956 0.766 18.155 4.225 3.016 4.012
St 2precise 0.957 0.743 18.016 4.231 3.057 4.053
Set2iuzy 0.956 0.747 18.125 4.227 3.108 4.136
Set3precise 0.953 0.740 19.498 4.382 3.173 4.211
RF SetShuzy 0.954 0.746 19.075 4.326 3.152 4.198
Setdprecise 0.956 0.741 18.314 4.255 3.102 4.122
Setliuzy 0.952 0.747 19.918 4.437 3.247 4.325
SetSprecise 0.956 0.741 18.403 4.261 3.092 4.101
SetSnuzy 0.955 0.744 18.502 4.271 3.128 4.161
Sl 0.969 0.770 12.857 3.481 2.871 4.105
St 2precise 0.973 0.752 10.958 3.199 2.673 3.873
Set2uzy 0.968 0.758 13.404 3.558 2.994 4.289
Set3precise 0.980 0.755 8.175 2.647 2.186 3.210
AB SetShuzy 0.974 0.760 10.820 3.157 2.664 3.851
Setdprecise 0.977 0.747 9.492 2.996 2.541 3.702
Setliuzy 0.977 0.749 9.524 2.962 2.484 3.578
SetSprecise 0.983 0.748 6.868 2.445 2.005 2.945
SetSnuzy 0.971 0.752 12.050 3.405 2911 4.181
Setl 0.965 0.786 14.509 3.538 2.597 3.507
SetZprecise 0.962 0.784 15.864 3.689 2.868 3.907
Set2huzy 0.963 0.780 15.468 3.513 2.763 3.749
Set3precise 0.971 0.770 11.917 3.111 2.384 3.226
GB Set3huzy 0.963 0.780 15.292 3.572 2.725 3.693
Setdprecise 0.968 0.776 13.322 3.271 2.530 3.425
Setduzy 0.968 0.778 13.396 3.319 2.549 3.451
StSprecise 0.962 0.771 16.035 3.730 2.902 3.958
StSnuzy 0.950 0.771 20.910 4.247 3.327 4.513
Setl 0.966 0.786 14.223 3.620 2.692 3.641
SetZprecise 0.957 0.785 17.661 3.806 2.941 4.004
XG Set2huzy 0.945 0.786 22.931 4.633 3.606 4.878
Set3precise 0.959 0.771 17.299 3.835 2.890 3.902
Set3huzy 0.966 0.776 13.923 3.361 2.538 3.412
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setdprecise 0.958 0.770 17.405 3.889 2.959 3.993

Sethiuzy 0.955 0.774 18.740 4.036 3.066 4.127

SetSprecise 0.957 0.773 17.877 3.837 2.946 4.005

SetSnuzy 0.940 0.777 24.886 4.800 3.711 5.024

Setl 0.951 0.773 20.401 4.334 3.285 4.472

Set2precise 0.951 0.768 20.215 4.252 3.275 4.467

Set2nuzy 0.936 0.772 26.454 4.902 3.810 5.175

Set3precise 0.963 0.754 15.520 3.514 2.682 3.646

LB St By 0.951 0.762 20.246 4.209 3.275 4.443
Setdprecise 0.942 0.758 24.155 4.587 3.520 4.790

Sethiuzy 0.936 0.768 26.469 4.900 3.800 5.151

SetSprecise 0.962 0.752 15.655 3.592 2.706 3.679

Setbruzy 0.956 0.751 18.155 3.893 2.959 4.023

Sl 0.838 0.748 67.236 8.175 5.625 7.308

St 2precise 0.846 0.766 63.819 7.962 5.661 7.464

Set2nuzy 0.832 0.754 69.485 8.311 5.956 7.829
Set3precise 0.843 0.767 65.144 8.045 5.755 7.629

SVM Set3ruzy 0.832 0.760 69.588 8.322 5.960 7.862
Setdprecise 0.840 0.765 66.027 8.104 5.765 7.603

Setliuzy 0.828 0.762 71.019 8.420 5.973 7.859

St5precise 0.844 0.767 64.564 8.020 5.739 7.570

Setbruzy 0.825 0.766 72.178 8.491 6.051 7.957

Satl 0.851 0.740 61.550 7.798 5.849 7.715

Set2precise 0.851 0.768 61.489 7.821 5.883 7.791

Set2nuzy 0.847 0.759 63.370 7.935 6.000 7.927
Set3precise 0.859 0.772 58.184 7.599 5.750 7.603

ANN Set3ruzy 0.846 0.768 63.903 7.977 6.043 7.967
Setprecise 0.852 0.773 61.205 7.803 5.883 7.760

Sty 0.849 0.760 62.489 7.871 5.952 7.852

SetSpredise 0.875 0.759 51.893 7.155 5.453 7.254

SetSnuzy 0.863 0.758 56.786 7.496 5.712 7.557

Satl 0.758 0.729 100.434 10.018 7.588 10.192
Set2precise 0.762 0.736 98.605 9.927 7.566 10.137

Set2nuzy 0.758 0.734 99.954 9.994 7.577 10.120

Set3precise 0.775 0.745 93.218 9.652 7.454 9.977

Ridge Set3ruzy 0.772 0.743 94.465 9.716 7.434 9.927
Setprecise 0.774 0.744 93.718 9.678 7.439 9.949

Setdiuzy 0.770 0.743 95.067 9.747 7.424 9.909

SetSprecise 0.768 0.742 95.854 9.788 7.559 10.138

SEtSruzy 0.764 0.739 97.477 9.870 7.573 10.120

Setl 0.753 0.724 102.272 10.109 7.629 10.199
Set2precise 0.762 0.736 98.666 9.930 7.562 10.136

Set2nuzy 0.758 0.733 99.969 9.995 7.573 10.118
Set3precise 0.774 0.744 93.502 9.667 7.443 9.960

LASSO Set3uzy 0.771 0.745 94.691 9.728 7.429 9.920
Setprecise 0.774 0.743 93.686 9.676 7.435 9.942

Setliuzy 0.770 0.743 95.199 9.754 7.411 9.879

SetBprecise 0.768 0.742 95.856 9.788 7.560 10.146

SEtSruzy 0.764 0.739 97.494 9.871 7.573 10.120
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Table A6. The fit performance of eleven machine learning models for ship S7 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.828 0.680 69.472 8.260 6.302 8.155
Set2predise 0.857 0.682 57.167 7.500 5.712 7.424
Set2yzy 0.849 0.660 60.603 7.737 5.932 7.752
Set3precise 0.880 0.683 48.319 6.903 5.173 6.749

DT Set3huzy 0.869 0.690 52.514 7.183 5.401 7.043
Setdprecise 0.875 0.656 50.042 7.032 5.307 6.936
Setliuzy 0.861 0.667 55.626 7.387 5.599 7.303
SetSprecise 0.881 0.694 47.827 6.863 5.127 6.665
SetShuzy 0.867 0.700 53.253 7.244 5.425 7.077
Sl 0.956 0.806 17.780 3.880 2.884 3.713
Set2predise 0.972 0.801 11.382 3.040 2.178 2.834
Set2fuzy 0.963 0.790 14.758 3.560 2.603 3.391
Set3precise 0.987 0.805 5.176 1.848 1.259 1.639
ET Set3huzy 0.978 0.798 8.693 2.379 1.664 2.155
Setdprecise 0.985 0.801 6.087 2.040 1.419 1.851
Setliuzy 0.983 0.793 6.706 2.149 1.522 1.983
SetSprecise 0.989 0.804 4.334 1.623 1.156 1.507
StSnuzy 0.979 0.799 8.329 2.549 1.855 2.405
Sl 0.964 0.793 14.369 3.774 2.813 3.649
Set2predise 0.962 0.791 15.123 3.842 2.826 3.694
Set2fuzy 0.962 0.788 15.442 3.899 2.887 3.800
Set3precise 0.961 0.794 15.501 3.920 2.867 3.740
RF SetShuzy 0.960 0.793 15.963 3.978 2.931 3.838
Setdprecise 0.961 0.791 15.742 3.947 2.898 3.795
Setliuzy 0.963 0.789 14.852 3.828 2.850 3.746
SetSprecise 0.966 0.796 13.853 3.691 2.705 3.528
SetSnuzy 0.967 0.797 13.384 3.644 2.715 3.551
Sl 0.964 0.790 14.672 3.464 2.781 3.712
St 2precise 0.975 0.770 10.014 2.848 2.207 2.964
Set2uzy 0.975 0.777 10.055 2.981 2.462 3.326
Set3precise 0.982 0.777 7.272 2415 1.888 2.558
AB SetShuzy 0.980 0.782 7.977 2.604 2.149 2.934
Setdprecise 0.982 0.776 7.209 2.516 2.080 2.838
Setliuzy 0.986 0.775 5.620 2.132 1.717 2.345
SetSprecise 0.984 0.783 6.493 2.337 1.897 2.589
SetSnuzy 0.987 0.783 5.343 2.100 1.752 2417
Setl 0.962 0.803 15.408 3.756 2.777 3.605
Set2precise 0.966 0.777 13.669 3.347 2.513 3.299
Set2huzy 0.967 0.782 13.148 3.471 2.602 3411
Set3precise 0.986 0.785 5.466 2.156 1.442 1.880
GB Set3huzy 0.978 0.782 9.078 2.764 1.973 2.582
Setdprecise 0.979 0.781 8.487 2.562 1.839 2.398
Setduzy 0.977 0.780 9.243 2.751 2.065 2.709
StSprecise 0.974 0.786 10.452 2.955 2.139 2.784
SetSnuzy 0.977 0.791 9.274 2.812 2.038 2.663
Setl 0.972 0.813 11.021 3.022 2222 2.865
Set2precise 0.972 0.777 11.392 3.120 2.269 2.926
XG Set2huzy 0.966 0.784 13.695 3.461 2.551 3.314
Set3precise 0.986 0.784 5.731 2.093 1.424 1.808
Set3huzy 0.980 0.791 8.192 2475 1.677 2.138
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setdprecise 0.979 0.784 8.576 2.711 1.867 2.394

Sethiuzy 0.975 0.781 10.191 2.769 1.988 2.568

SetSprecise 0.978 0.792 8.680 2.772 1.971 2.532

SetSnuzy 0.973 0.798 11.025 3.167 2.272 2.932

Setl 0.957 0.789 17.547 4.044 3.053 3.968

Set2precise 0.978 0.766 8.892 2.744 2.051 2.693

Set2nuzy 0.967 0.781 13.285 3.426 2.603 3.407

Set3precise 0.982 0.785 7.152 2.366 1.742 2.283

LB St By 0.975 0.779 10.039 2.861 2.175 2.840
Setdprecise 0.981 0.775 7.814 2.542 1.865 2.427

Sethiuzy 0.961 0.774 15.690 3.755 2.837 3.692

SetSprecise 0.979 0.781 8.598 2.522 1.855 2.431

Setbruzy 0.979 0.787 8.541 2.673 1.945 2.545

Sl 0.906 0.786 38.185 6.078 4.323 5.574

St 2precise 0.870 0.744 52.317 7.160 5.243 6.699

Set2nuzy 0.873 0.744 50.939 7.070 5.115 6.582
Set3precise 0.871 0.748 51.533 7.113 5.173 6.591

SVM Set3ruzy 0.866 0.746 53.727 7.249 5.261 6.730
Setdprecise 0.873 0.745 50.841 7.045 5.125 6.552

Setliuzy 0.876 0.745 49.716 6.983 5.055 6.504

St5precise 0.867 0.752 53.427 7.236 5.264 6.699

Setbruzy 0.863 0.750 54.999 7.343 5.366 6.862

Satl 0.863 0.786 55.639 7.392 5.651 7.274

Set2precise 0.902 0.770 39.097 6.203 4.856 6.310

Set2nuzy 0.888 0.764 45.229 6.656 5.210 6.807

Set3precise 0.892 0.771 43.321 6.515 5.071 6.587

ANN Set3ruzy 0.896 0.760 41.782 6.386 4.981 6.481
Setprecise 0.897 0.767 41.488 6.373 4.959 6.441

Sty 0.891 0.765 43.762 6.559 5.110 6.643

SetSpredise 0.895 0.756 42.257 6.425 5.003 6.480

Setbruzy 0.884 0.755 46.486 6.748 5.244 6.798

Satl 0.790 0.781 85.163 9.224 6.955 8.817

Set2precise 0.817 0.761 73.490 8.564 6.612 8.463

Set2nuzy 0.816 0.761 74.035 8.596 6.669 8.578

Set3precise 0.820 0.758 72.381 8.498 6.520 8.315

Ridge Set3ruzy 0.818 0.756 72.910 8.530 6.596 8.451
Setprecise 0.819 0.759 72.799 8.523 6.552 8.361

Setliuzy 0.818 0.758 73.098 8.541 6.609 8.473

SetSprecise 0.818 0.761 73.217 8.547 6.587 8.422

SetSnuzy 0.816 0.760 73.809 8.583 6.660 8.550

Setl 0.789 0.781 85.405 9.238 6.961 8.819

Set2precise 0.816 0.760 73.729 8.577 6.627 8.498

Set2nuzy 0.815 0.760 74.215 8.606 6.673 8.595

Set3precise 0.819 0.758 72.827 8.524 6.550 8.374

LASSO Set3uzy 0.816 0.759 73.644 8.573 6.627 8.498
Setprecise 0.817 0.758 73.386 8.557 6.591 8.435

Setliuzy 0.817 0.759 73.478 8.563 6.620 8.500

SetBprecise 0.817 0.761 73.504 8.564 6.606 8.462

SEtSruzy 0.815 0.761 74.089 8.599 6.666 8.564
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Table A7. The fit performance of eleven machine learning models for ship S8 (DFS1)

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.916 0.774 54.181 7.305 5.213 6.441
Set2predise 0912 0.759 52.806 7.194 5.129 6.172
Set2yzy 0.905 0.766 57.141 7.487 5.353 6.419
Set3precise 0916 0.769 50.649 6.985 4.922 5.949

DT Set3huzy 0919 0.764 48.884 6.889 4.885 5.920
Setdprecise 0912 0.746 52.752 7.168 5.070 6.092
Setliuzy 0.904 0.759 57.557 7.549 5.362 6.450
SetSprecise 0914 0.759 51.752 7.105 5.020 6.054
SetShuzy 0.909 0.770 54.614 7.268 5.163 6.237
Sl 0.998 0.882 1.556 0.811 0.551 0.679
St 2precise 0.997 0.872 1.552 0.879 0.565 0.694
Set2fuzy 0.998 0.866 1.288 0.841 0.540 0.661
Set3precise 0.995 0.876 2.783 1.404 0.907 1.120
ET Set3huzy 0.997 0.872 1.940 1.024 0.652 0.801
Setdprecise 0.996 0.871 2.382 1.227 0.799 0.993
Setliuzy 0.995 0.865 2.894 1.392 0.879 1.077
SetSprecise 0.999 0.883 0.612 0.629 0.398 0.486
SetSnuzy 0.996 0.877 2.216 1.169 0.771 0.947
Sl 0.978 0.859 13.895 3.707 2.535 3.124
Set2predise 0.974 0.846 15.712 3.941 2.668 3.233
Set2iuzy 0.977 0.846 14.095 3.740 2.546 3.081
Set3precise 0.976 0.855 14.566 3.798 2.624 3.187
RF SetShuzy 0.975 0.854 15.158 3.868 2.676 3.254
Setdprecise 0.976 0.847 14.789 3.811 2.615 3.173
Setliuzy 0.977 0.848 13.912 3.714 2.561 3.109
SetSprecise 0.978 0.864 13.567 3.653 2.490 3.026
SetSnuzy 0.976 0.861 14.658 3.788 2.569 3.128
Sl 0.982 0.870 11.601 3.288 2.747 3.479
St 2precise 0.989 0.860 6.723 2.470 2.032 2.565
Set2uzy 0.990 0.863 5.990 2.329 1.896 2.390
Set3precise 0.991 0.863 5.365 2.114 1.693 2.148
AB SetShuzy 0.991 0.864 5.138 2.093 1.673 2.127
Setdprecise 0.992 0.859 5.046 2.111 1.705 2.162
Setliuzy 0.992 0.861 4.835 2.069 1.654 2.102
SetSprecise 0.993 0.870 4374 1.789 1.402 1.780
SetSnuzy 0.997 0.874 1.966 1.273 0.931 1.189
Setl 0.983 0.875 10.771 3.062 2.188 2.750
Set2precise 0.978 0.855 13.587 3.035 2.111 2.607
Set2huzy 0.983 0.857 10.329 2.874 2.021 2.498
Set3precise 0.985 0.860 9.102 2.427 1.670 2.075
GB Set3huzy 0.995 0.857 3.004 1.287 0.842 1.048
Setdprecise 0.988 0.852 7.318 2.176 1.474 1.838
Setduzy 0.986 0.851 8.424 2.377 1.660 2.048
SetSpredise 0.986 0.862 8.808 2.254 1.584 1.944
SetSnuzy 0.988 0.866 7.600 2.117 1.463 1.809
Setl 0.991 0.877 5.538 1.956 1.429 1.791
SetZprecise 0.984 0.855 9.630 2.793 1.927 2.356
XG Set2huzy 0.986 0.856 8.638 2.520 1.735 2.124
Set3precise 0.979 0.856 12.821 2.974 2.114 2.589
Set3huzy 0.996 0.850 2.393 1.247 0.855 1.037
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setdprecise 0.987 0.850 7.927 2.477 1.690 2.090

Sethiuzy 0.989 0.844 6.722 2.123 1.467 1.806

SetSprecise 0.975 0.862 15.510 3.650 2.627 3.198

SetSnuzy 0.984 0.865 9.919 2.722 1.919 2.340

Setl 0.979 0.871 13.718 3.540 2.601 3.309

Set2precise 0.976 0.841 14.612 3.308 2.379 2.931

Set2nuzy 0.984 0.847 9.763 2.672 1.913 2.391

Set3precise 0.976 0.852 14.749 3.261 2.338 2.882

LB St By 0.982 0.853 10.653 2.726 1.918 2.392
Setdprecise 0.972 0.846 16.669 3.865 2.817 3.487

Sethiuzy 0.976 0.844 14.589 3.543 2.518 3.129

SetSprecise 0.981 0.857 11.529 2.914 2.067 2.566

SetSnuzy 0.968 0.855 19.211 3.849 2.753 3.397

Sl 0.900 0.862 64.371 8.014 5.742 6.905

St 2precise 0.903 0.862 58.473 7.635 5.275 6.257

Set2nuzy 0.895 0.851 63.089 7.936 5.594 6.596
Set3precise 0.910 0.869 54.154 7.349 5.117 6.123

SVM Set3ruzy 0.901 0.858 59.486 7.706 5.436 6.468
Setdprecise 0.910 0.870 54.276 7.358 5.123 6.137

Setliuzy 0.901 0.859 59.951 7.737 5.479 6.524

St5precise 0.905 0.870 57.155 7.549 5.309 6.301

Setbruzy 0.898 0.860 61.411 7.828 5.547 6.547

Satl 0.914 0.857 55.217 7.398 5.605 6.809

Set2precise 0.916 0.849 50.726 7.075 5.203 6.214

Set2nuzy 0.912 0.842 53.036 7.247 5.382 6.405

Set3precise 0.924 0.862 46.222 6.733 4.964 5.959

ANN Set3ruzy 0.910 0.858 54.260 7.342 5.454 6.491
Setlprecise 0.920 0.862 48.397 6.914 5.080 6.086

Setliuzy 0.916 0.854 50.805 7.090 5.262 6.283

SetSpredise 0.915 0.860 51.212 7.114 5.213 6.234

Setbruzy 0.910 0.856 54.312 7.342 5.411 6.426

Satl 0.866 0.842 86.315 9.288 7.004 8.561

Set2precise 0.870 0.844 78.603 8.861 6.746 8.191

Set2nuzy 0.865 0.839 81.580 9.027 6.944 8.384

Set3precise 0.879 0.853 72.818 8.529 6.512 7.959

Ridge Set3ruzy 0.874 0.847 76.048 8.716 6.690 8.141
Setprecise 0.878 0.851 73.870 8.591 6.541 7.997

Setdiuzy 0.872 0.846 76.952 8.768 6.731 8.177

SetSprecise 0.879 0.855 73.221 8.552 6.522 7.973

SetSnuzy 0.873 0.850 76.678 8.752 6.703 8.148

Setl 0.865 0.842 87.140 9.332 7.023 8.576

Set2precise 0.869 0.843 78.883 8.876 6.752 8.189

Set2nuzy 0.864 0.838 81.756 9.037 6.950 8.384

Set3precise 0.878 0.852 73.581 8.573 6.525 7.966

LASSO Set3uzy 0.872 0.848 77.013 8.771 6.702 8.135
Setprecise 0.877 0.850 74.067 8.602 6.544 7.999

Setliuzy 0.872 0.845 77.229 8.784 6.740 8.181

SetBprecise 0.878 0.854 73.626 8.576 6.533 7.981

SEtSruzy 0.872 0.849 77.215 8.782 6.711 8.148
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Table A8. The fit performance of eleven machine learning models for ship S2 (DFS2)

Model Dataset R? R (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.833 0.668 113.854 10.580 7.934 8.951

Al precise 0.848 0.647 95.131 9.497 7.026 8.169

Al Rty 0.850 0.635 94.066 9.585 7.155 8.275

Al S3precise 0.832 0.625 105.279 10.063 7.466 8.761

DT Al S3ruzy 0.835 0.616 103.114 10.046 7.495 8.671
Al HAprecise 0.854 0.634 91.071 9.389 6.915 8.058

Al SHzy 0.832 0.638 104.706 10.121 7.549 8.763

Al Dprecise 0.838 0.641 100.776 9.878 7.326 8.621

Al SHiizy 0.844 0.645 98.151 9.776 7.276 8.406
SetSprecise® 0.820 0.589 112.089 10.461 7.916 9.230

Sl 0.971 0.786 19.857 4.055 2.986 3.306

Al 2precise 0.966 0.769 21.080 4.247 3.184 3.681

Al 2z 0.958 0.765 26.376 5.012 3.869 4.454

Al S3precise 0.973 0.775 16.741 3.697 2.653 3.048

ET Al SBruzy 0.968 0.769 19.826 4.047 2.961 3.398
Al HAprecise 0.969 0.767 19.271 4.076 3.015 3.476

Al HAuzy 0.962 0.764 23.481 4.488 3.310 3.817

Al Sprecise 0.979 0.776 13.486 3.239 2.390 2.760

Al Sz ® 0.952 0.766 29.638 5.037 3.783 4.339
St3precise 0.974 0.765 15.842 3.377 2.445 2.780

Setl 0.959 0.766 27.622 5.205 3.750 4.227

Al 2precise 0.947 0.753 32.873 5.683 4.092 4.765

Al Szy 0.955 0.751 27.856 5.237 3.790 4.396

Al S3yrecise 0.955 0.757 28.055 5.259 3.774 4415

RE Al SBiizy 0.945 0.750 34.278 5.766 4.051 4.704
Al HAprecise 0.951 0.753 30.772 5.477 3.879 4.491

Al Sz 0.946 0.748 33.751 5.721 4.078 4.720

Al Sprecise 0.948 0.757 32.466 5.645 4.072 4.748

Al DBhizzy 0.949 0.754 31.822 5.577 3.975 4.637
Set3precise® 0.950 0.740 31.494 5.541 4.007 4.662

Setl 0.968 0.762 21.779 4.305 3.609 4.143

Al Sprecise 0.980 0.748 12.278 3.280 2.750 3.190

Al Szy 0.973 0.739 16.514 3.821 3.216 3.725

Al S3yrecise 0.980 0.749 12.642 3.279 2.739 3.205

AB Al S3uzy 0.977 0.746 14.184 3.472 2.922 3.409
Al HAprecise 0.980 0.748 12.489 3.353 2.804 3.262

Al 0.976 0.738 14.841 3.491 2913 3.390

Al Sprecise 0.975 0.754 15.834 3.830 3.227 3.765

Al Sruzy 0.971 0.754 18.197 4.128 3.549 4.162
Set3precise® 0.961 0.743 24.755 4.778 4.073 4.729

Setl 0.964 0.781 24.457 4.564 3.429 3.793

Al Sprecise 0.980 0.764 12.651 3.166 2.496 2.842

Al Stz 0.964 0.749 22.561 4.354 3.304 3.719

Al SByrecise 0.979 0.773 12.602 2.905 2.149 2421

GB Al S3uzy 0.980 0.760 12.341 3.100 2.236 2.502
Al HAprecise 0.988 0.772 7.589 2.274 1.677 1.884

AlHAuzy 0.973 0.763 16.682 3.628 2.707 3.057

Al Dprecise 0.964 0.766 22.248 4.288 3.136 3.537

Al Sruzy 0.967 0.759 20.448 4.297 3.300 3.722
Set3precise® 0.992 0.760 5.008 1.817 1.234 1.378
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.975 0.781 16.733 3.503 2.631 2.868

Al R2precise 0.959 0.757 25.467 4.457 3.004 3.294

Al Stz 0.962 0.754 23.570 4.567 3.274 3.615

Al SBprecise 0.976 0.772 15.247 3.278 2.139 2.359

XG Al SBruzy 0.978 0.768 13.808 3.206 2.178 2.390
AlHAprecise 0.966 0.765 20.767 4.157 2.743 3.008

Al Stz 0.960 0.762 24.749 4.576 3.229 3.544

Al Sprecise 0.965 0.763 21.869 4.287 2.959 3.263

Al Sruzy 0.953 0.758 29.132 5.014 3.622 3.995
Set3preise” 0.991 0.765 5.421 1.949 1.186 1.277

Setl 0.946 0.761 36.850 5.784 4.429 4.834

Al 2precise 0.951 0.738 30.039 5.172 3.733 4.200

Al iz 0.941 0.727 36.987 5.955 4.353 4919

Al S3precise 0.972 0.745 17.363 3.757 2.709 3.079

LB Al SBruzy 0.961 0.730 24.200 4.627 3.333 3.789
AlHAprecise 0.959 0.683 25.467 4.524 3.348 3.862

Al Stz 0.957 0.716 27.166 4917 3.685 4.188

Al Sprecise 0.959 0.733 25.714 4.671 3.276 3.798

Al Sruzy 0.941 0.733 36.457 5.684 4.108 4.702
Set3predise 0.980 0.748 12.589 3.053 2.179 2.442

Setl 0.848 0.797 103.306 10.147 7.260 7.779

Al 2precise 0.878 0.812 76.193 8.710 6.221 6.788

Al 25z 0.873 0.808 79.392 8.896 6.332 6.952

Al S3precise 0.875 0.816 78.296 8.829 6.359 6.937

Al SBruzy 0.871 0.810 80.452 8.950 6.470 7.131

SVM AlHAprecise 0.875 0.815 78.376 8.834 6.364 6.962
AlSHAuzy 0.874 0.808 78.811 8.862 6.358 7.007

Al SBprecise 0.880 0.809 74.547 8.599 6.191 6.738

Al SHruzy 0.869 0.804 81.630 9.012 6.541 7.180
Set3precise 0.864 0.812 84.860 9.176 6.608 7.210

Setl 0.876 0.787 84.367 9.093 6.935 7.682

Al 2precise 0.890 0.805 68.589 8.223 6.248 6.993

Al Rtz 0.884 0.803 72.222 8.473 6.444 7.232

Al Sprecise 0.893 0.815 66.528 8.111 6.172 6.926

ANN Al SBruzy 0.891 0.811 67.646 8.181 6.182 6.952
Al HAprecise 0.894 0.818 66.090 8.068 6.141 6.914

Al Stz 0.886 0.817 71.270 8.405 6.354 7.172

Al SHprecise 0.895 0.797 65.299 8.036 6.139 6.847

Al iz 0.887 0.802 70.576 8.362 6.365 7.100
Set3precise 0.908 0.791 56.693 7.365 5.581 6.171

Sl 0.822 0.786 121.419 11.016 8.454 9.312

Al R2precise 0.829 0.810 107.128 10.345 7.775 8.763

Al Rtz 0.822 0.803 110.983 10.529 7.876 8.873

Al Sprecise 0.837 0.810 102.096 10.100 7.682 8.732

Ridge Al SBruzy 0.833 0.808 104.294 10.208 7.715 8.787
AlHAprecise 0.836 0.813 102.598 10.125 7.695 8.759

AlSHAuzy 0.833 0.809 104.538 10.220 7.723 8.798

Al Bprecise 0.829 0.810 106.864 10.332 7.780 8.791

Al Siuzy 0.823 0.803 110.694 10.515 7.877 8.895
Set3precise 0.826 0.802 108.847 10.429 8.011 9.055

Setl 0.822 0.785 121.508 11.020 8.471 9.331
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Model Dataset R? R? (test) MSE %}\g:}g (lt\;[cﬁs) M(OA/OI))E
LASSO | AlR2predise 0.829 0.810 107.127 10.344 7.774 8.748
Al Rtz 0.822 0.802 111.266 10.542 7.882 8.861
Al SBprecise 0.836 0.809 102.493 10.119 7.676 8.700
Al SBruzy 0.831 0.809 105.332 10.259 7.719 8.779
AlHAprecise 0.836 0.812 102.731 10.131 7.685 8.720
AlHA iz 0.832 0.809 105.148 10.250 7.714 8.765
Al Sprecise 0.829 0.810 106.939 10.336 7.779 8.774
Al Sruzy 0.823 0.803 110.874 10.524 7.884 8.887
Set3predise” 0.824 0.796 110.162 10.492 8.034 9.042

Note: Set3predise is the best dataset with DFS1.
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Table A9. The fit performance of eleven machine learning models for ship S3 (DFS2)

Model Dataset R? R (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.857 0.684 105.672 10.125 7.259 8.643

Al precise 0.854 0.699 106.123 10.087 7.292 8.759

Al 2z 0.850 0.695 108.384 10.209 7.427 8.876

Al S3precise 0.871 0.706 93.959 9.334 6.759 8.074

DT Al S3ruzy 0.874 0.681 90.614 9.273 6.729 7.972
Al HAprecise 0.867 0.692 97.233 9.628 6.941 8.311

Al SHzy 0.869 0.687 94.625 9.621 7.005 8.343

Al Dprecise 0.867 0.684 97.066 9.534 6.948 8.222

Al SHiizy 0.853 0.704 106.927 10.083 7.267 8.664
SetSprecise® 0.865 0.684 98.572 9.705 7.042 8.343

Sl 0.977 0.800 17.021 3.911 2.462 2.964

Al 2precise 0.986 0.822 10.267 2.769 1.681 2.113

Al 2z 0.977 0.814 16.566 3.552 2.175 2.756

Al S3precise 0.982 0.818 12.791 3.030 1.702 2.189

ET Al SBruzy 0.988 0.813 8.588 2.438 1.478 1.867
Al HAprecise 0.981 0.816 13.605 3.179 1.861 2.371

Al HAuzy 0.981 0.811 13.638 3.326 2.026 2.557

Al Sprecise 0.982 0.828 13.029 3.188 1.858 2.364

Al SBruzy 0.983 0.826 12.304 2.986 1.751 2.218
Set3predise 0.985 0.821 10.758 2.846 1.716 2.181

Setl 0.960 0.768 29.573 5.369 3.497 4.234

Al 2precise 0.963 0.807 26.977 5.153 3.378 4.167

Al Szy 0.959 0.803 29.977 5.426 3.478 4315

Al S3yrecise 0.951 0.803 35.971 5.896 3.790 4.743

RE Al SBiizy 0.948 0.807 37.592 6.052 3.787 4.741
Al HAprecise 0.959 0.797 29.386 5.381 3.477 4317

Al Sz 0.954 0.802 33.398 5.680 3.620 4.511

Al Sprecise 0.963 0.809 27.121 5.168 3.376 4.170

Al SBruzy 0.960 0.805 29.142 5.343 3415 4.241
Set3precise® 0.956 0.802 31.781 5.576 3.587 4.463

Setl 0.988 0.798 9.177 2.942 2.371 2.718

Al Sprecise 0.990 0.815 7.319 2.589 2.060 2.335

Al Szy 0.989 0.805 7.569 2.576 1.975 2.218

Al S3yrecise 0.995 0.813 3.799 1.682 1.270 1.480

AB Al S3uzy 0.994 0.803 4.303 1.839 1.356 1.568
Al HAprecise 0.992 0.810 5.579 2.186 1.699 1.933

Al 0.989 0.801 7.743 2.614 2.101 2.367

Al Sprecise 0.995 0.820 3.588 1.728 1.292 1.513

Al Sruzy 0.995 0.802 3.489 1.623 1.154 1.330
Set3precise® 0.991 0.812 6.328 2.183 1.712 1.998

Setl 0.962 0.776 28.220 4.726 3.221 3.841

Al Sprecise 0.966 0.815 25.195 4.467 2.872 3.617

Al Stz 0.962 0.798 27.998 4.806 3.066 3.870

Al SByrecise 0.974 0.817 18.985 3.721 2.311 2.932

GB Al S3uzy 0.968 0.810 23.467 4.597 2.809 3.582
Al HAprecise 0.960 0.813 29.026 4.863 3.092 3.881

AlHAuzy 0.966 0.811 25.102 4.373 2.668 3.431

Al Dprecise 0.969 0.818 22.552 4.221 2.710 3.366

Al Sruzy 0.971 0.817 21.037 4.028 2.586 3.238
Set3precise® 0.964 0.819 26.559 4.694 2.836 3.642
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.959 0.778 30.013 4.738 3.214 3.744
Al R2precise 0.961 0.814 28.566 4.798 2.995 3.753
Al Stz 0.942 0.807 42.158 5.988 3.915 4.873
Al SBprecise 0.964 0.809 26.403 4.516 2.727 3.416
XG Al SBruzy 0.969 0.806 22.552 4.331 2.511 3.237
AlHAprecise 0.954 0.809 33.595 5.384 3.366 4.179
Al Stz 0.961 0.806 28.229 5.078 3.093 3.892
Al Sprecise 0.976 0.819 17.745 3.884 2.439 2.960
Al Sruzy 0.959 0.808 30.356 4.995 3.159 3.921
Set3preise” 0.961 0.810 28.714 5.030 3.052 3.828
Setl 0.935 0.766 48.608 6.560 4.506 5.448
Al 2precise 0.945 0.802 40.487 5.912 3.868 4.848
Al iz 0.925 0.802 53.776 7.068 4.742 5.928
Al Sprecise 0.954 0.802 33.337 5.389 3.474 4.419
LB Al SBruzy 0.952 0.795 34.420 5.268 3.534 4.423
AlHAprecise 0.938 0.801 44.899 6.546 4.381 5.462
Al Stz 0.947 0.784 38.969 5.866 3.946 4.969
Al Sprecise 0.952 0.804 35.323 5.432 3.468 4.412
Al Sruzy 0.953 0.796 34.216 5.421 3.563 4.487
Set3predise 0.947 0.804 38.795 5.845 3.853 4.853
Setl 0.812 0.791 138.669 11.753 7.557 8.957
Al 2precise 0.842 0.825 114.633 10.675 6.588 8.092
Al 25z 0.829 0.817 123.943 11.116 6.904 8.485
Al S3precise 0.847 0.823 110.536 10.488 6.537 8.005
Al SBruzy 0.842 0.816 114.255 10.658 6.761 8.329
SVM AlHAprecise 0.845 0.828 112.062 10.563 6.588 8.077
AlSHAuzy 0.842 0.822 114.254 10.668 6.734 8.244
Al SBprecise 0.840 0.825 115.821 10.727 6.746 8.262
Al SHruzy 0.840 0.818 115.603 10.720 6.657 8.187
Set3precise” 0.844 0.820 113.000 10.591 6.627 8.167
Setl 0.829 0.780 126.769 11.217 7.780 9.353
Al 2precise 0.849 0.812 109.169 10.413 7.022 8.680
Al Rtz 0.849 0.813 109.194 10.415 6.917 8.561
Al Sprecise 0.869 0.800 94.542 9.681 6.645 8.156
ANN Al SBruzy 0.847 0.799 111.263 10.484 7.230 8.936
Al HAprecise 0.860 0.799 101.451 10.008 6.840 8.418
AlSHAuzy 0.847 0.800 110.709 10.470 7.192 8.881
Al SHprecise 0.860 0.813 101.322 10.029 6.763 8.262
Al Sruzy 0.854 0.810 106.288 10.265 6.849 8.413
Set3precise 0.874 0.798 91.583 9.475 6.480 7.992
Sl 0.780 0.778 162.676 12.739 9.007 11.114
Al R2precise 0.793 0.801 149.861 12.227 8.517 10.890
Al Rtz 0.790 0.799 152.029 12.316 8.509 10.860
Al Sprecise 0.801 0.797 143.924 11.981 8.319 10.627
Ridge Al SBruzy 0.802 0.798 143.536 11.966 8.330 10.651
AlHAprecise 0.798 0.799 145.868 12.062 8.348 10.695
AlSHAuzy 0.799 0.800 145.189 12.035 8.339 10.671
Al Bprecise 0.796 0.804 147.564 12.133 8.425 10.745
Al Siuzy 0.793 0.802 149.516 12.214 8.459 10.779
Set3precise 0.801 0.796 144.061 11.987 8.329 10.615
Setl 0.779 0.778 163.445 12.769 9.011 11.128
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Model Dataset R? R? (test) MSE %}\g:}g (lt\;[cﬁs) M(OA/OI))E
LASSO | AlR2predise 0.793 0.800 149.869 12.227 8.508 10.879
Al Rtz 0.790 0.799 152.048 12.317 8.502 10.852
Al SBprecise 0.800 0.798 145.050 12.028 8.317 10.627
Al SBruzy 0.800 0.798 144.547 12.007 8.322 10.641
AlHAprecise 0.798 0.799 146.172 12.075 8.346 10.694
Al Stz 0.799 0.799 145.246 12.037 8.329 10.657
Al Sprecise 0.796 0.804 147.612 12.135 8.426 10.746
Al Sruzy 0.793 0.802 149.539 12.215 8.450 10.765
Set3predise” 0.799 0.796 145.425 12.043 8.323 10.619

Note: Set3predise is the best dataset with DFS1.
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Table A10. The fit performance of eleven machine learning models for ship S4 (DFS2)

Model Dataset R? R (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.906 0.758 81.312 8.851 6.363 6.681

Al precise 0916 0.736 69.034 8.033 5.999 6.463

Al 2z 0.910 0.730 73.824 8.275 6.130 6.586

Al S3precise 0.916 0.741 68.065 8.086 6.006 6.432

DT Al S3ruzy 0.926 0.725 60.675 7.518 5.564 5919
Al HAprecise 0.921 0.745 64.090 7.807 5.747 6.160

Al SHzy 0.899 0.741 82.735 8.913 6.661 7.152

Al Dprecise 0.904 0.749 78.681 8.637 6.425 6.897

Al SHiizy 0912 0.758 72.400 8.366 6.185 6.648
SetSprecise® 0916 0.746 68.063 8.094 6.036 6.523

Sl 0.988 0.858 10.120 2.625 1.778 1.862

Al 2precise 0.999 0.867 0.705 0.629 0.394 0.422

Al 2z 0.999 0.863 0.811 0.714 0.462 0.495

Al S3precise 0.997 0.869 2.131 1.151 0.807 0.876

ET Al SBruzy 0.997 0.864 2431 1.115 0.779 0.846
Al HAprecise 0.997 0.870 2.521 1.191 0.845 0.915

Al HAuzy 0.998 0.864 1.826 1.115 0.768 0.830

Al Sprecise 0.998 0.871 1.642 0.927 0.651 0.696

Al SBruzy 0.998 0.866 1.390 0.973 0.659 0.716
Set3predise 0.998 0.872 1.434 0.901 0.627 0.687

Setl 0.974 0.848 22.794 4.752 3.335 3.501

Al 2precise 0.976 0.856 19.824 4.444 3.279 3.600

Al Szy 0.976 0.854 19.766 4.429 3.273 3.607

Al S3yrecise 0.972 0.854 22477 4.723 3.464 3.773

RE Al SBiizy 0.973 0.855 21.949 4.659 3.424 3.751
Al HAprecise 0.973 0.855 21.804 4.644 3.421 3.742

Al Sz 0.974 0.858 21.363 4.599 3.381 3.708

Al Sprecise 0.975 0.859 20.097 4472 3.292 3.590

Al SBruzy 0.975 0.858 20.309 4.491 3.298 3.602
Set3precise® 0.975 0.853 20.349 4.497 3.331 3.618

Setl 0.980 0.843 17.332 3.939 3.283 3.654

Al Sprecise 0.987 0.865 10.568 3.102 2.595 2916

Al Szy 0.985 0.862 11.992 3.358 2.790 3.103

Al S3yrecise 0.990 0.867 8.454 2.664 2.206 2.484

AB Al S3uzy 0.989 0.867 8.670 2.766 2.285 2.560
Al HAprecise 0.988 0.864 9.894 2.953 2.477 2.782

Al 0.987 0.864 10.576 3.117 2.607 2916

Al Sprecise 0.988 0.869 9.701 2.956 2.466 2.774

Al Sruzy 0.988 0.868 9.410 2.864 2.401 2.674
Set3precise® 0.986 0.865 11.021 3.144 2.591 2.905

Setl 0.977 0.851 19.591 4.196 3.176 3.352

Al Sprecise 0.989 0.868 9.077 2.587 1.960 2.099

Al Stz 0.988 0.868 9.667 2.653 2.046 2.189

Al SByrecise 0.995 0.868 4.407 1.836 1.343 1.452

GB Al SBiuzy 0.991 0.871 7.288 2.277 1.677 1.808
Al HAprecise 0.993 0.866 5.462 1.884 1.438 1.531

AlHAuzy 0.991 0.863 6.981 2.207 1.677 1.803

Al Dprecise 0.991 0.873 7.631 2412 1.810 1.933

Al Sruzy 0.990 0.875 8.437 2.566 1.943 2.087
Set3precise® 0.989 0.866 8.845 2.500 1.838 1.957

— 107 —




Appendix

Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.977 0.858 19.657 4.126 3.068 3.185

Al R2precise 0.991 0.864 7.508 2.341 1.721 1.808

Al Stz 0.992 0.870 6.889 2.321 1.715 1.816

Al SBprecise 0.994 0.868 4.689 1.591 1.126 1.196

XG Al SBruzy 0.995 0.873 4.260 1.605 1.117 1.188
AlHAprecise 0.993 0.861 5.846 1.821 1.344 1.426

Al Stz 0.989 0.865 8.965 2.311 1.733 1.832

Al Sprecise 0.992 0.870 6.441 2.074 1.548 1.640

Al Sruzy 0.987 0.878 11.059 2.835 2.157 2.299
Set3preise” 0.995 0.869 3.758 1.585 1.140 1.201

Setl 0.968 0.844 28.153 5.010 3.861 4.044

Al 2precise 0.979 0.851 17.028 3.711 2.865 3.064

Al 25z 0.988 0.854 9.860 2.778 2.152 2.313

Al Sprecise 0.989 0.866 9.039 2.625 2.009 2.161

LB Al SBruzy 0.986 0.865 11.633 3.097 2.388 2.564
AlHAprecise 0.978 0.855 18.105 3.969 3.112 3.336

AlHAuzy 0.981 0.846 15.360 3.672 2.862 3.083

Al Sprecise 0.992 0.865 6.859 2.321 1.771 1.925

Al Sruzy 0.987 0.873 10.530 2.901 2.250 2.440
Set3predise 0.987 0.855 10.943 2.871 2.200 2.340

Setl 0.906 0.842 81.874 9.015 6.318 6.374

Al 2precise 0.930 0.848 56.850 7.333 5.462 5.814

Al 25z 0.936 0.845 51.762 6.893 5.122 5.485

Al S3precise 0.929 0.846 57.822 7.548 5.488 5.811

Al Sty 0.917 0.842 68.045 8.187 5.956 6.291

SVM AlHAprecise 0.926 0.850 60.077 7.704 5.660 5.977
AlSHAuzy 0.917 0.846 67.802 8.170 5.974 6.346

Al SBprecise 0.927 0.860 59.875 7.686 5.642 6.018

Al SBiyzy 0.919 0.854 66.517 8.094 5.967 6.387
Set3precise” 0.921 0.857 63.718 7.972 5.848 6.146

Setl 0.925 0.845 65.521 8.076 6.102 6.390

Al 2precise 0.936 0.862 52.288 7.217 5.653 6.104

Al Rtz 0.936 0.842 52.055 7.184 5.607 6.059

Al Sprecise 0.944 0.859 46.191 6.779 5.331 5.782

ANN Al SBruzy 0.941 0.848 48.047 6.911 5.366 5.842
Al HAprecise 0.943 0.856 46.674 6.812 5.354 5.803

Al Stz 0.943 0.852 46.629 6.809 5.277 5.720

Al SHprecise 0.939 0.868 50.219 7.062 5.524 5.962

Al iz 0.930 0.858 57.295 7.541 5.889 6.371
Set3precise 0.947 0.856 42.555 6.513 5.034 5.502

Sl 0.825 0.821 152.631 12.351 9.343 9.548

Al R2precise 0.822 0.802 145.669 12.066 9.341 9.625

Al Rtz 0.816 0.796 150.467 12.263 9.500 9.837

Al Sprecise 0.832 0.807 137.392 11.717 9.182 9.497

Ridge Al SBruzy 0.826 0.802 141.931 11.909 9.280 9.647
AlHAprecise 0.831 0.806 138.025 11.744 9.187 9.487

AlSHAuzy 0.826 0.802 142.348 11.926 9.279 9.628

Al Bprecise 0.827 0.808 141.409 11.888 9.244 9.534

Al Siuzy 0.822 0.803 145.201 12.046 9.355 9.690
Set3precise 0.833 0.811 135.334 11.629 9.033 9.406

Setl 0.824 0.823 153.402 12.382 9.347 9.537
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Model Dataset R? R? (test) MSE %}\g:}g (lt\;[cﬁs) M(OA/OI))E
LASSO | AlR2predise 0.822 0.803 145.771 12.070 9.340 9.620
Al Rtz 0.815 0.797 150.852 12.279 9.508 9.835
Al SBprecise 0.831 0.806 137.956 11.741 9.191 9.499
Al SBruzy 0.824 0.804 143.555 11.977 9.303 9.641
AlHAprecise 0.831 0.806 138.364 11.759 9.193 9.489
Al Stz 0.825 0.802 143.263 11.964 9.292 9.626
Al Sprecise 0.827 0.808 141.586 11.895 9.244 9.530
Al Siuzy 0.822 0.805 145.687 12.067 9.364 9.692
Set3predise” 0.832 0.809 135.961 11.656 9.053 9.417

Note: Set3predise is the best dataset with DFS1.
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Table A11. The fit performance of eleven machine learning models for ship S5 (DFS2)

Model Dataset R? R (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.939 0.821 33.699 5.588 4.144 6.259

Al precise 0.947 0.795 29.259 5.181 3.809 5.761

Al Stz 0.946 0.799 30.200 5.379 3.954 5.947

Al S3precise 0.942 0.793 31.964 5.502 4.072 6.137

DT Al S3ruzy 0.941 0.812 32.694 5.643 4.181 6.328
Al HAprecise 0.940 0.793 33.054 5.628 4.130 6.221

Al SHzy 0.941 0.800 32.814 5.558 4.121 6.247

Al Dprecise 0.948 0.800 28.458 5.104 3.741 5.634

Al SHiizy 0.945 0.826 30.556 5.217 3.848 5.813
SetSprecise® 0.947 0.785 29.488 5.182 3.764 5.625

Sl 0.998 0.895 1.057 0.805 0.569 0.857

Al Rprecise 0.999 0.896 0.493 0.529 0.371 0.559

Al 2z 0.998 0.893 1.165 0.835 0.604 0914

Al S3precise 0.998 0.895 0.890 0.707 0.495 0.748

ET Al SBruzy 0.997 0.893 1.963 1.134 0.815 1.234
Al HAprecise 0.998 0.895 1.105 0.768 0.550 0.842

Al HAuzy 0.998 0.893 1.248 0.820 0.579 0.879

Al Sprecise 0.997 0.894 1.475 0.901 0.652 0.988

Al SBruzy 0.998 0.891 1.055 0.808 0.584 0.883
Set3predise 0.997 0.892 1413 0.854 0.619 0.935

Setl 0.982 0.884 9.951 3.140 2.354 3.594

Al 2precise 0.982 0.878 9.753 3.116 2.290 3.509

Al Szy 0.983 0.883 9.496 3.072 2.249 3.461

Al S3yrecise 0.982 0.879 10.152 3.168 2.328 3.562

RE Al SBiizy 0.983 0.887 9.681 3.103 2.298 3.538
Al HAprecise 0.981 0.875 10.565 3.238 2.356 3.594

Al Sz 0.983 0.885 9.200 3.026 2.224 3.413

Al Sprecise 0.983 0.879 9.594 3.090 2.281 3.497

Al SBruzy 0.984 0.887 9.003 2.996 2.238 3.464
Set3precise® 0.981 0.874 10.498 3.225 2.390 3.663

Setl 0.990 0.895 5.408 2213 1.830 3.156

Al Sprecise 0.994 0.886 3.187 1.671 1.336 2.365

Al Szy 0.995 0.893 2917 1.577 1.231 2.199

Al S3yrecise 0.996 0.892 2.337 1.372 1.073 1.942

AB Al S3uzy 0.997 0.897 1.684 1.136 0.841 1.554
Al HAprecise 0.995 0.888 2.854 1.584 1.262 2.249
Al 0.995 0.894 2.937 1.618 1.277 2.286

Al Sprecise 0.995 0.889 2.723 1.476 1.172 2.123

Al Sruzy 0.996 0.895 2.299 1.392 1.081 1.951
Set3precise® 0.995 0.886 2.543 1.525 1.209 2.217

Setl 0.993 0.895 3.885 1.743 1.360 2.158

Al Sprecise 0.996 0.892 2.273 1.265 0.946 1.496

Al Stz 0.997 0.893 1.801 1.015 0.782 1.257

Al SByrecise 0.995 0.890 2.674 1.204 0.879 1.397

GB Al S3uzy 0.996 0.894 2.307 1.143 0.839 1.335
Al HAprecise 0.997 0.888 1.936 1.010 0.720 1.132
AlHAuzy 0.994 0.893 3.367 1.426 1.047 1.656

Al Dprecise 0.997 0.893 1.628 1.102 0.823 1.310

Al Sruzy 0.993 0.892 3.733 1.665 1.282 2.046
Set3precise® 0.993 0.887 3.519 1.359 1.021 1.610
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Model Dataset R? R? (test) MSE ﬁ}\c/lle?}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.990 0.892 5.361 1.995 1.520 2.370

Al Rprecise 0.997 0.884 1.919 1.190 0.830 1.304

Al Stz 0.993 0.886 3.701 1.539 1.118 1.750

Al SBprecise 0.996 0.885 2.079 1.206 0.857 1.347

XG Al SBruzy 0.991 0.893 4.859 1.785 1.314 2.077
AlHAprecise 0.990 0.884 5.595 2.020 1.420 2.218

AlHAuzy 0.992 0.888 4.440 1.860 1.368 2.169

Al Sprecise 0.991 0.891 4.860 1.909 1.382 2.183

Al Sruzy 0.992 0.887 4.417 1.897 1.403 2.206
Set3preise” 0.993 0.878 3.601 1.605 1.133 1.749

Setl 0.986 0.879 7.810 2.636 2.028 3.173

Al 2precise 0.987 0.879 7.311 2.490 1.883 2.957

Al 25z 0.984 0.869 9.040 2.831 2.115 3.308

Al S3precise 0.991 0.882 5.103 2.066 1.528 2.380

LB Al SBruzy 0.985 0.884 8.471 2.658 1.990 3.143
AlHAprecise 0.987 0.846 7.256 2.420 1.848 2.954

AlHAuzy 0.984 0.878 9.032 2.837 2.146 3.365

Al Sprecise 0.991 0.880 4.875 2.049 1.523 2.390

Al Sruzy 0.983 0.879 9.198 2.795 2.104 3.278
Set3predise 0.987 0.873 7.382 2.350 1.758 2.725

Setl 0.931 0.884 38.408 6.173 4.382 6.630

Al 2precise 0.916 0.881 46.567 6.810 4916 7.414

Al 25z 0.912 0.886 48.618 6.946 4.984 7.542

Al S3precise 0.912 0.880 48.897 6.986 5.055 7.619

Al Sty 0.913 0.882 48.270 6.942 5.017 7.597

SVM AlHAprecise 0.913 0.878 47.993 6.918 5.019 7.549
AlSHAuzy 0.915 0.881 47.104 6.851 4.980 7.544

Al SBprecise 0.918 0.878 45.274 6.711 4.874 7.385

Al SHruzy 0.920 0.880 44.342 6.608 4.801 7.317
Set3precise” 0.916 0.873 46.421 6.785 4917 7.472

Setl 0.926 0.886 40.737 6.373 4.900 7.545

Al 2precise 0.938 0.876 34.278 5.776 4.398 6.845

Al Rtz 0.943 0.885 31.933 5.592 4.281 6.685

Al Sprecise 0.942 0.881 32.259 5.619 4.257 6.634

ANN Al SBruzy 0.935 0.881 35.988 5.948 4.524 7.035
Al HAprecise 0.940 0.880 33.504 5.733 4.354 6.741

AlSHAuzy 0.938 0.878 34.189 5.806 4435 6.882

Al SHprecise 0.935 0.878 36.276 5.973 4.538 6.997

Al Sruzy 0.939 0.881 33.836 5.787 4.393 6.840
Set3precise 0.935 0.879 36.157 5.956 4.544 7.075

Sl 0.875 0.868 69.368 8.325 6.341 9.937

Al R2precise 0.886 0.875 63.247 7.949 5.972 9.145

Al Rtz 0.884 0.874 64.133 8.004 5.987 9.116

Al Sprecise 0.892 0.868 60.011 7.743 5.826 8.883

Ridge Al SBruzy 0.892 0.871 59.890 7.735 5.845 8.893
Al HAprecise 0.890 0.872 60.879 7.799 5.867 8.914

AlSHAuzy 0.890 0.873 60.924 7.802 5.897 8.940

Al Bprecise 0.887 0.874 62.515 7.903 5.941 9.040

Al Siuzy 0.887 0.875 62.587 7.907 5.952 9.027
Set3precise 0.889 0.868 61.610 7.846 5.934 9.109

Setl 0.874 0.868 69.799 8.351 6.357 9.948
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Model Dataset R? R? (test) MSE %}\g:}g (lt\;[cﬁs) M(OA/OI))E
LASSO | AlR2predise 0.886 0.875 63.278 7.951 5.976 9.156
Al Rtz 0.884 0.874 64.249 8.012 5.995 9.128
Al SBprecise 0.891 0.869 60.385 7.766 5.839 8.900
Al Siuzy 0.891 0.870 60.464 7.771 5.876 8.925
AlHAprecise 0.889 0.869 61.278 7.824 5.879 8.934
Al Stz 0.890 0.873 61.092 7.813 5.909 8.957
Al Sprecise 0.887 0.874 62.689 7.914 5.950 9.050
Al Sruzy 0.887 0.874 62.829 7.923 5.967 9.032
Set3predise” 0.888 0.868 61.988 7.870 5.953 9.129

Note: Set3predise is the best dataset with DFS1.
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Table A12. The fit performance of eleven machine learning models for ship S6 (DFS2)

Model Dataset R? R (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.837 0.636 67.292 8.143 5917 7.777

Al precise 0.823 0.572 73.999 8.507 6.292 8.362

Al 2z 0.839 0.584 67.435 8.118 5.944 7.841

Al S3precise 0.847 0.568 63.921 7.913 5.799 7.668

DT Al S3ruzy 0.841 0.581 66.494 8.095 5.969 7.923
Al HAprecise 0.855 0.571 60.340 7.645 5.580 7.407

Al SHzy 0.833 0.594 69.924 8.261 6.086 8.043

Al Dprecise 0.847 0.581 63.834 7.896 5.826 7.701

Al SHiizy 0.832 0.591 70.398 8.318 6.145 8.148
SetSprecise® 0.832 0.576 69.684 8.275 6.119 8.113

Sl 0.985 0.765 6.050 1.928 1.359 1.796

Al 2precise 0.991 0.767 3.917 1.699 1.229 1.633

Al 2z 0.992 0.765 3.275 1.519 1.124 1.491

Al S3precise 0.988 0.764 4917 1.561 1.136 1.516

ET Al SBruzy 0.986 0.765 5.657 1.944 1.414 1.886
Al HAprecise 0.988 0.762 4.791 1.801 1.318 1.760

Al HAuzy 0.987 0.763 5.498 1.871 1.381 1.838

Al Sprecise 0.984 0.763 6.604 2.439 1.780 2.368

Al SBruzy 0.989 0.759 4.566 1.904 1.413 1.874
Set3predise 0.979 0.752 8.706 2.743 2.010 2.678

Setl 0.956 0.766 18.155 4.225 3.016 4.012

Al 2precise 0.956 0.747 18.527 4.279 3.106 4.133

Al Szy 0.961 0.753 16.394 4.028 2.959 3.942

Al S3yrecise 0.954 0.746 19.175 4.366 3.148 4.187

RE Al SBiizy 0.954 0.752 19.080 4.337 3.155 4211
Al HAprecise 0.956 0.747 18.285 4.259 3.068 4.089

Al Sz 0.958 0.755 17.786 4.194 3.069 4.097

Al Sprecise 0.959 0.747 17.057 4.116 2.974 3.950

Al SBruzy 0.962 0.751 16.017 3.985 2.922 3.886
Set3precise® 0.953 0.740 19.498 4.382 3.173 4.211

Setl 0.969 0.770 12.857 3.481 2.871 4.105

Al Sprecise 0.984 0.752 6.749 2.491 2.043 2.988

Al Szy 0.980 0.759 8.310 2.799 2.346 3.410

Al S3yrecise 0.985 0.752 6.184 2.309 1.883 2.810

AB Al S3uzy 0.983 0.766 7.124 2.537 2.098 3.091
Al HAprecise 0.983 0.755 6.924 2.537 2.113 3.111

Al iy 0.975 0.756 10.579 3.112 2.619 3.768

Al Sprecise 0.983 0.750 6.959 2.393 1.958 2.888

Al Sruzy 0.980 0.759 8.222 2.643 2.186 3.192
Set3precise® 0.980 0.755 8.175 2.647 2.186 3.210

Setl 0.965 0.786 14.509 3.538 2.597 3.507

Al Sprecise 0.974 0.774 10.728 2915 2.250 3.046

Al Stz 0.971 0.778 12.005 3.246 2.535 3.453

Al SByrecise 0.968 0.768 13.413 3.271 2.531 3.437

GB Al S3uzy 0.974 0.766 10.865 2.713 2.076 2.823
Al HAprecise 0.974 0.768 10.657 3.097 2.384 3.237

AlHAuzy 0.970 0.775 12.628 3.386 2.650 3.600

Al Dprecise 0.954 0.765 19.294 4.244 3.282 4.469

Al Sruzy 0.960 0.765 16.628 3.852 2.995 4.059
Set3precise® 0.971 0.770 11.917 3.111 2.384 3.226
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.966 0.786 14.223 3.620 2.692 3.641

Al R2precise 0.971 0.773 11.988 3.174 2.438 3.306

Al Stz 0.964 0.777 15.126 3.599 2.766 3.757

Al SBprecise 0.964 0.762 15.014 3.485 2.673 3.639

XG Al S3iuzy 0.965 0.774 14.662 3.570 2.728 3.697
AlHAprecise 0.971 0.768 12.290 3.278 2.516 3.416

AlHAuzy 0.972 0.779 11.539 3.130 2.381 3.228

Al Sprecise 0.948 0.765 21.685 4.533 3.501 4.755

Al Sruzy 0.957 0.758 17.993 3.859 2.929 3.955
Set3preise” 0.959 0.771 17.299 3.835 2.890 3.902

Setl 0.951 0.773 20.401 4.334 3.285 4.472

Al 2precise 0.957 0.769 18.000 4.086 3.154 4.284

Al iz 0.965 0.774 14.771 3.662 2.829 3.877

Al Sprecise 0.965 0.751 14.716 3.549 2.709 3.676

LB Al SBruzy 0.961 0.765 16.089 3.729 2.875 3.906
AlHAprecise 0.961 0.756 16.273 3.800 2.915 3.961

AlHAuzy 0.962 0.764 15.650 3.683 2.832 3.853

Al Sprecise 0.956 0.749 18.441 3.987 3.023 4.106

Al Sruzy 0.963 0.757 15.608 3.608 2.754 3.761
Set3predise 0.963 0.754 15.520 3.514 2.682 3.646

Setl 0.838 0.748 67.236 8.175 5.625 7.308

Al precise 0.859 0.768 58.991 7.655 5.491 7.220

Al 25z 0.840 0.762 66.704 8.154 5.866 7.724

Al S3precise 0.849 0.766 63.237 7.922 5.687 7.503

Al Sty 0.835 0.768 68.880 8.281 5.903 7.754

SVM AlHAprecise 0.840 0.769 66.795 8.150 5.817 7.656
AlSHAuzy 0.842 0.766 66.097 8.114 5.750 7.527

Al SBprecise 0.846 0.770 64.572 8.017 5.703 7.479

Al SBiyzy 0.826 0.774 72.707 8.522 6.072 7.993
Set3precise” 0.843 0.767 65.144 8.045 5.755 7.629

Setl 0.851 0.740 61.550 7.798 5.849 7.715

Al 2precise 0.875 0.763 52.267 7.189 5.479 7.270

Al Rtz 0.855 0.767 60.467 7.758 5.885 7.788

Al Sprecise 0.865 0.774 56.395 7.477 5.698 7.549

ANN Al SBruzy 0.854 0.776 61.192 7.813 5.943 7.845
Al HAprecise 0.868 0.775 55.403 7.419 5.662 7.506

Al Stz 0.859 0.769 58.976 7.652 5.795 7.653

Al SHprecise 0.868 0.765 55.181 7.401 5.673 7.526

Al iz 0.854 0.765 60.861 7.781 5.944 7.870
Set3precise 0.859 0.772 58.184 7.599 5.750 7.603

Sl 0.758 0.729 100.434 10.018 7.588 10.192

Al R2precise 0.773 0.740 94.924 9.740 7.360 9.841

Al Rtz 0.771 0.738 95.615 9.775 7.376 9.863

Al Sprecise 0.787 0.749 89.046 9.434 7.255 9.691

Ridge Al SBruzy 0.785 0.747 89.799 9.473 7.247 9.679
AlHAprecise 0.786 0.750 89.615 9.464 7.237 9.663

AlSHAuzy 0.784 0.748 90.306 9.500 7.233 9.661

Al Bprecise 0.778 0.743 92.805 9.631 7.393 9.895

Al Siuzy 0.777 0.741 93.183 9.651 7.389 9.899
Set3precise 0.775 0.745 93.218 9.652 7.454 9.977

Setl 0.753 0.724 102.272 10.109 7.629 10.199
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Model Dataset R? R? (test) MSE %}\g:}g (lt\;[cﬁs) M(OA/OI))E
LASSO | AlR2predise 0.772 0.738 95.454 9.767 7.342 9.801
Al Rtz 0.770 0.735 96.087 9.799 7.368 9.835
Al SBprecise 0.786 0.747 89.527 9.459 7.238 9.656
Al Siuzy 0.784 0.749 90.435 9.507 7.231 9.643
AlHAprecise 0.785 0.747 89.820 9.475 7.231 9.647
Al Stz 0.783 0.749 90.743 9.523 7.206 9.600
Al Sprecise 0.777 0.741 93.139 9.648 7.387 9.878
Al Sruzy 0.777 0.741 93.454 9.665 7.379 9.870
Set3predise” 0.774 0.744 93.502 9.667 7.443 9.960

Note: Set3predise is the best dataset with DFS1.
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Table A13. The fit performance of eleven machine learning models for ship S7 (DFS2)

Model Dataset R? R (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.828 0.680 69.472 8.260 6.302 8.155

Al precise 0.863 0.680 55.328 7.389 5.573 7.264

Al 2z 0.853 0.670 59.404 7.669 5.797 7.542

Al S3precise 0.856 0.670 58.237 7.557 5.694 7.432

DT Al S3ruzy 0.850 0.671 60.824 7.759 5.896 7.686
Al HAprecise 0.855 0.667 58.606 7.606 5.720 7.432

Al SHzy 0.856 0.671 58.321 7.622 5.775 7.511

Al Dprecise 0.865 0.678 54.511 7.334 5.473 7.099

Al SHiizy 0.867 0.669 53.839 7.272 5.433 7.071
SetSprecise® 0.880 0.683 48.319 6.903 5.173 6.749

Sl 0.956 0.806 17.780 3.880 2.884 3.713

Al 2precise 0.983 0.830 6.818 2.117 1.487 1.925

Al 2z 0.971 0.819 11.791 3.070 2.178 2.810

Al S3precise 0.979 0.830 8.690 2410 1.676 2.170

ET Al SBruzy 0.973 0.826 10.900 2.886 2.007 2.593
Al HAprecise 0.983 0.829 6.702 2.040 1.405 1.820

Al HAuzy 0.976 0.820 9.693 2.688 1.894 2.454

Al Sprecise 0.978 0.834 8.811 2.497 1.753 2.266

Al SBruzy 0.983 0.828 6.851 2.236 1.591 2.050
Set3predise 0.987 0.805 5.176 1.848 1.259 1.639

Setl 0.964 0.793 14.369 3.774 2.813 3.649

Al 2precise 0.962 0.808 15.226 3.874 2.845 3.726

Al Szy 0.959 0.806 16.605 4.019 2.964 3.884

Al S3yrecise 0.958 0.810 16.981 4.069 2.963 3.883

RE Al SBiizy 0.958 0.811 17.018 4.095 2.979 3.891
Al HAprecise 0.957 0.809 17.317 4.118 3.023 3.958

Al Sz 0.957 0.806 17.549 4.147 3.037 3.972

Al Sprecise 0.964 0.813 14.703 3.799 2.760 3.604

Al SBruzy 0.966 0.817 13.809 3.684 2.693 3.513
Set3precise® 0.961 0.794 15.501 3.920 2.867 3.740

Setl 0.964 0.790 14.672 3.464 2.781 3.712

Al Sprecise 0.984 0.813 6.382 2.399 1.970 2.684

Al Szy 0.986 0.812 5.520 2.083 1.663 2.269

Al S3yrecise 0.991 0.813 3.818 1.747 1.405 1.959

AB Al S3uzy 0.988 0.816 4.669 1.917 1.519 2.098
Al HAprecise 0.987 0.810 5.060 2.008 1.642 2.260

Al 0.984 0.812 6.476 2.401 2.023 2.782

Al Sprecise 0.988 0.826 4.812 2.046 1.675 2.298

Al Sruzy 0.987 0.820 5.055 2.014 1.624 2.245
Set3precise® 0.982 0.777 7.272 2415 1.888 2.558

Setl 0.962 0.803 15.408 3.756 2.777 3.605

Al Sprecise 0.971 0.815 11.694 3.275 2.287 2.984

Al Stz 0.963 0.811 14.984 3.741 2.665 3.503

Al SByrecise 0.978 0.818 8.854 2.705 1.774 2312

GB Al S3uzy 0.973 0.821 10.691 3.106 2.141 2.809
Al HAprecise 0.973 0.811 10.692 3.036 2.085 2.729

AlHAuzy 0.975 0.814 9.991 2.994 2.068 2.705

Al Dprecise 0.975 0.826 10.330 3.084 2.147 2.810

Al Sruzy 0.977 0.822 9.116 2.812 1.991 2.610
Set3precise® 0.986 0.785 5.466 2.156 1.442 1.880
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.972 0.813 11.021 3.022 2.222 2.865

Al R2precise 0.972 0.810 11.116 3.156 2.168 2.779

Al Stz 0.968 0.814 12.937 3.415 2.437 3.161

Al SBprecise 0.981 0.816 7.733 2.613 1.674 2.122

XG Al SBruzy 0.977 0.822 9.345 2.859 1.912 2.453
AlHAprecise 0.973 0.813 10.730 3.019 2.111 2.714

AlHAuzy 0.972 0.821 11.364 3.182 2.236 2.883

Al Sprecise 0.973 0.827 10.967 3.204 2.208 2.823

Al Sruzy 0.976 0.831 9.854 2.981 2.094 2.702
Set3preise” 0.986 0.784 5.731 2.093 1.424 1.808

Setl 0.957 0.789 17.547 4.044 3.053 3.968

Al 2precise 0.963 0.796 14.730 3.673 2.655 3.489

Al iz 0.959 0.794 16.325 3.769 2.812 3.691

Al Sprecise 0.976 0.809 9.713 2.740 1.932 2.536

LB Al SBruzy 0.975 0.805 10.022 3.034 2.163 2.840
AlHAprecise 0.963 0.790 15.034 3.546 2.604 3.424

Al Stz 0.976 0.788 9.920 2.910 2.171 2.846

Al Sprecise 0.981 0.803 7.624 2.614 1.804 2.364

Al Sruzy 0.973 0.813 10.759 2.940 2.095 2.762
Set3predise 0.982 0.785 7.152 2.366 1.742 2.283

Setl 0.906 0.786 38.185 6.078 4.323 5.574

Al 2precise 0.867 0.819 53.666 7.308 5.142 6.525

Al 25z 0.855 0.812 58.832 7.646 5.481 6.978

Al S3precise 0.861 0.820 56.159 7.463 5.273 6.678

Al Sty 0.860 0.820 56.543 7.490 5.326 6.747

SVM AlHAprecise 0.860 0.821 56.451 7.482 5.268 6.680
AlSHAuzy 0.868 0.816 53.522 7.291 5.227 6.663

Al SBprecise 0.854 0.815 58.893 7.641 5.411 6.831

Al SBiyzy 0.855 0.811 58.735 7.637 5.447 6.893
Set3precise” 0.871 0.748 51.533 7.113 5.173 6.591

Setl 0.863 0.786 55.639 7.392 5.651 7.274

Al 2precise 0.877 0.822 49.757 7.015 5.388 6.972

Al Rtz 0.880 0.815 48.398 6.909 5.348 6.960

Al Sprecise 0.886 0.818 46.000 6.707 5.154 6.669

ANN Al SBruzy 0.891 0.816 44.189 6.596 5.071 6.574
Al HAprecise 0.895 0.820 42.238 6.442 4.942 6.414

AlSHAuzy 0.886 0.819 46.178 6.751 5.216 6.783

Al SHprecise 0.879 0.805 48.929 6.903 5.287 6.805

Al iz 0.869 0.806 53.158 7.238 5.571 7.180
Set3precise 0.892 0.771 43.321 6.515 5.071 6.587

Sl 0.790 0.781 85.163 9.224 6.955 8.817

Al R2precise 0.807 0.797 77.989 8.828 6.677 8.485

Al Rtz 0.806 0.793 78.557 8.860 6.742 8.596

Al Sprecise 0.813 0.798 75.843 8.705 6.551 8.321

Ridge Al SBruzy 0.813 0.795 75.785 8.701 6.614 8.420
AlHAprecise 0.811 0.800 76.446 8.740 6.580 8.334

AlSHAuzy 0.811 0.797 76.688 8.754 6.640 8.432

Al Bprecise 0.809 0.799 77.312 8.789 6.635 8.431

Al Siuzy 0.809 0.796 77.344 8.791 6.707 8.543
Set3precise 0.820 0.758 72.381 8.498 6.520 8.315

Setl 0.789 0.781 85.405 9.238 6.961 8.819
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Model Dataset R? R? (test) MSE %}\g:}g (lt\;[cﬁs) M(OA/OI))E
LASSO | AlR2predise 0.807 0.796 78.356 8.848 6.703 8.536
Al Rtz 0.806 0.792 78.750 8.871 6.753 8.625
Al SBprecise 0.811 0.796 76.696 8.753 6.608 8.410
Al Siuzy 0.811 0.796 76.732 8.756 6.644 8.459
AlHAprecise 0.809 0.798 77.292 8.787 6.634 8.425
Al Stz 0.809 0.797 77.165 8.781 6.659 8.477
Al Sprecise 0.808 0.798 77.734 8.813 6.664 8.483
Al Sruzy 0.808 0.796 77.682 8.811 6.719 8.568
Set3predise” 0.819 0.758 72.827 8.524 6.550 8.374

Note: Set3predise is the best dataset with DFS1.

— 118 —




Appendix

Table A14. The fit performance of eleven machine learning models for ship S8 (DFS2)

Model Dataset R? R (test) MSE ﬁ%[:}g (lt\;[(ﬁ}]?) M(OA/OI))E
Sl 0.916 0.774 54.181 7.305 5.213 6.441

Al precise 0.910 0.734 54.413 7.305 5.175 6.255

Al 25z 0.909 0.751 55.016 7.391 5.225 6.303

Al S3precise 0.904 0.764 58.172 7.506 5.430 6.557

DT Al S3ruzy 0.910 0.757 54.043 7.255 5.193 6.272
Al HAprecise 0.910 0.746 54.031 7.280 5.178 6.240

Al SHzy 0.907 0.747 56.211 7.451 5.288 6.384

Al Dprecise 0.908 0.771 55.429 7.369 5.275 6.362

Al SHiizy 0.925 0.777 45.620 6.622 4.665 5.687
SetSprecise® 0916 0.769 50.649 6.985 4.922 5.949

Sl 0.998 0.882 1.556 0.811 0.551 0.679

Al Rprecise 0.998 0.866 0.927 0.774 0.471 0.588

Al 2z 0.995 0.862 2.789 1.167 0.761 0.941

Al S3precise 0.997 0.870 2.074 1.178 0.744 0.925

ET Al SBruzy 0.997 0.870 1.736 0.987 0.628 0.776
Al HAprecise 0.996 0.865 2.660 1.228 0.795 0.986

Al HAuzy 0.997 0.863 1.868 1.000 0.639 0.791

Al Sprecise 0.998 0.877 1.223 0.864 0.549 0.687

Al SBruzy 0.998 0.874 1.459 0.949 0.616 0.766
Set3predise 0.995 0.876 2.783 1.404 0.907 1.120

Setl 0.978 0.859 13.895 3.707 2.535 3.124

Al 2precise 0.974 0.840 15.552 3.918 2.680 3.274

Al Szy 0.976 0.840 14.417 3.782 2.623 3.196

Al S3yrecise 0.970 0.848 17.980 4.202 2.858 3.508

RE Al SBiizy 0.975 0.848 15.355 3.895 2.688 3.294
Al HAprecise 0.974 0.839 15.743 3.948 2.718 3.318

Al Sz 0.974 0.840 15.800 3.958 2.747 3.356

Al Sprecise 0.975 0.856 15.054 3.848 2.645 3.229

Al SBruzy 0.976 0.860 14.471 3.781 2.619 3.204
Set3precise® 0.976 0.855 14.566 3.798 2.624 3.187

Setl 0.982 0.870 11.601 3.288 2.747 3.479

Al Sprecise 0.993 0.852 4.466 2.032 1.640 2.081

Al Szy 0.990 0.860 6.002 2.344 1.935 2.443

Al S3yrecise 0.993 0.857 4.187 1.850 1.461 1.869

AB Al S3uzy 0.993 0.859 4.258 1.782 1.406 1.799
Al HAprecise 0.992 0.853 4.887 2.044 1.651 2.115

Al 0.994 0.856 3.765 1.844 1.442 1.826

Al Sprecise 0.995 0.866 3.047 1.544 1.182 1.516

Al Sruzy 0.996 0.874 2.605 1.432 1.084 1.388
Set3precise® 0.991 0.863 5.365 2.114 1.693 2.148

Setl 0.983 0.875 10.771 3.062 2.188 2.750

Al Sprecise 0.990 0.845 6.089 1.946 1.312 1.638

Al Stz 0.991 0.842 5.472 1.961 1.317 1.636

Al SByrecise 0.989 0.851 6.797 2.127 1.416 1.777

GB Al S3uzy 0.985 0.850 9.273 2.484 1.694 2.119
Al HAprecise 0.991 0.849 5.801 1.838 1.227 1.539

AlHAuzy 0.992 0.846 4.749 1.968 1.355 1.695

Al Dprecise 0.988 0.859 7.367 2.097 1.438 1.781

Al Sruzy 0.986 0.863 8.510 2.330 1.622 2.011
Set3precise® 0.985 0.860 9.102 2427 1.670 2.075
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Model Dataset R? R? (test) MSE ﬁ%[:}g (lt\;[cﬁs) M(OA/OI))E
Setl 0.991 0.877 5.538 1.956 1.429 1.791

Al R2precise 0.979 0.841 12.914 3.086 2.202 2.713

Al Stz 0.989 0.850 6.647 2.089 1.460 1.815

Al SBprecise 0.985 0.842 9.459 2.492 1.759 2.163

XG Al SBruzy 0.989 0.850 6.678 2.185 1.473 1.824
AlHAprecise 0.982 0.839 11.047 2.796 1.970 2.439

Al Stz 0.987 0.847 7.669 2.271 1.552 1.925

Al Sprecise 0.973 0.863 16.064 3.747 2.646 3.231

Al Sruzy 0.978 0.861 13.557 3.275 2.288 2.797
Set3preise” 0.979 0.856 12.821 2.974 2.114 2.589

Setl 0.979 0.871 13.718 3.540 2.601 3.309

Al 2precise 0.973 0.832 16.182 3.417 2.447 3.043

Al 25z 0.983 0.837 9.937 2.763 1.977 2.484

Al Sprecise 0.982 0.844 10.828 2.743 1.936 2.441

LB Al SBruzy 0.979 0.848 12.946 3.069 2.203 2.759
AlHAprecise 0.969 0.824 18.763 4.017 2.929 3.677

Al Stz 0.973 0.835 16.409 3.765 2.725 3.415

Al Sprecise 0.973 0.849 16.500 3.523 2.521 3.138

Al Sruzy 0.978 0.860 13.784 3.213 2.262 2.836
Set3predise 0.976 0.852 14.749 3.261 2.338 2.882

Setl 0.900 0.862 64.371 8.014 5.742 6.905

Al 2precise 0.892 0.846 64.923 8.048 5.555 6.624

Al 25z 0.886 0.841 68.842 8.289 5.746 6.819

Al S3precise 0.906 0.861 56.735 7.523 5.223 6.371

Al SBruzy 0.901 0.856 59.608 7.712 5.314 6.426

SVM AlHAprecise 0.906 0.862 56.668 7.517 5.201 6.343
AlSHAuzy 0.900 0.856 60.112 7.746 5.316 6.423

Al SBprecise 0.897 0.858 62.015 7.865 5.503 6.604

Al SBiyzy 0.892 0.854 65.006 8.054 5.607 6.685
Set3precise” 0.910 0.869 54.154 7.349 5.117 6.123

Setl 0.914 0.857 55.217 7.398 5.605 6.809

Al 2precise 0.903 0.834 58.524 7.590 5.568 6.678

Al Rtz 0.896 0.830 62.810 7.876 5.865 7.024

Al Sprecise 0.913 0.854 52.371 7.201 5.280 6.420

ANN Al SBruzy 0.910 0.850 54.338 7.351 5.383 6.496
Al HAprecise 0.917 0.849 50.268 7.033 5.138 6.252

Al Stz 0.913 0.847 52.479 7.207 5.293 6.397

Al SHprecise 0.911 0.846 53.888 7.282 5.345 6.458

Al Sruzy 0.912 0.848 53.388 7.276 5.335 6.431
Set3precise 0.924 0.862 46.222 6.733 4.964 5.959

Sl 0.866 0.842 86.315 9.288 7.004 8.561

Al R2precise 0.858 0.829 85.639 9.248 7.008 8.573

Al Rtz 0.856 0.826 87.056 9.324 7.077 8.631

Al Sprecise 0.868 0.839 79.392 8.905 6.681 8.300

Ridge Al SBruzy 0.866 0.836 81.009 8.996 6.756 8.358
AlHAprecise 0.867 0.838 79.957 8.936 6.693 8.299

AlSHAuzy 0.864 0.835 81.764 9.037 6.780 8.364

Al Bprecise 0.867 0.840 80.108 8.945 6.728 8.344

Al Siuzy 0.865 0.838 81.568 9.026 6.771 8.361
Set3precise 0.879 0.853 72.818 8.529 6.512 7.959

Setl 0.865 0.842 87.140 9.332 7.023 8.576
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Model Dataset R? R? (test) MSE %}\g:}g (lt\;[cﬁs) M(OA/OI))E
LASSO | AlR2predise 0.857 0.828 85.994 9.267 7.011 8.567
Al Rtz 0.855 0.826 87.359 9.340 7.076 8.621
Al SBprecise 0.867 0.839 80.087 8.944 6.729 8.334
Al SBruzy 0.864 0.837 81.870 9.043 6.794 8.365
AlHAprecise 0.867 0.838 80.157 8.948 6.700 8.306
Al Stz 0.864 0.834 81.947 9.047 6.787 8.369
Al Sprecise 0.867 0.840 80.433 8.963 6.737 8.348
Al Siuzy 0.864 0.838 82.001 9.050 6.782 8.359
Set3predise” 0.878 0.852 73.581 8.573 6.525 7.966

Note: Set3predise is the best dataset with DFS1.

— 121 —




Appendix

+39s uonedrdde/)say uo 19 Jo dueuriopidd 3y ay) suedwr (3893) L, 39S UIed) uo I Jo ddueuriofrad 31y oy
sugdw (uren)) 14, S diys 1oy orreudds uonedrdde )soj/uonedrdde yyuow-| + Surures) ypuow-g,, & ur sppowt Jo (;3) dduewioyrdd 3 *Tvy dn3y

gIsbulloy () vIsbul|jod (p)
7
N
N
7
grshulloy (0) zissbul|joy () T1eshul| 0y ()
¢S digs

(sS diys) 3s9y/uonedndde yyuow-y + Sururesy ypuow-g

IAMU

(AMC)



Appendix

+39s uonedrdde/)sd) uo | Jo dduewrioyrad 31y ay) surdw (359)) LA, 39S UIRI) U0 L7 Jo ddueurio)1ad 31y 3y}
sugdw (ure.) 4, *9S diys 10y orreudds uonedrjdde 3s33/uonedijdde gruow-1 + Sururey ypuow-g,, & ul SpPpow Jo (;3) duewrioyaad 31 ‘7 31n3iq

GIsbulloy (9) v1sbul|oy (p)
g1sbulljod () zwsbulfoy (q) TIS0U1||0Y (®)
9g diys

(9S diys) 3s9y/uonedndde yyuow-J + Sururesy ypuow-g

f
™
~
-

f



Appendix

+39s uonedrdde/)sa) uo 14 Jo ddueuwriopidd 1y Ay suedwr (3893) L, 39S UIed) uo I Jo ddueuriofrad 3y oy
sugdw (uren) L, *SS diys 1oy orieudds uonedrdde )soj/uonedndde yiuow-| + Suures) yuow-y,, & ur sppow Jo (;3y) dduewioyiad 31 *€y dan3yg

glsbullioy () gisbulloy () yIsbulloy (p)
7
<t
Y
7
€1esbul]|oy () Z1sbul|oy (q) PESTEO)
¢S digs

(sS diys) 3s9y/uonedndde yyuow-j + Sururey yjuow-j

Intmatora Assocaton of artime Unversies

(AMC)



Appendix

+9s uoneddde/)sa) uo |q jo dueuriopidd 3y ay) suedwt (3s93) L, 39S U} U0 I JO ddueuriofad 3y o)
sugdw  (uren)) L., *9S diys 1oy orreudns uonedrdde  3so)/uonedrdde qiuow-| + Jurure.) YHuow-y,, € ur sppowt Jo () dduewriofrod 3 *pV 33

gsbulloy () GIsbulloy (9) y1sbullod (p)
ewsbulloy (0) zisbulfoy (q) TIShullj0d ()
9S diys

(9S diys) 3s9y/uonedndde yyuow-j + Sururey yjuow-j

f
Lo
N
-

f









International Association of Maritime Universities
Meiwa Building 8F, 1-15-10 Toranomon, Minato-ku, Tokyo 105-0001, Japan

Tel : 81-3-6257-1812  E-mail : info@iamu-edu.org URL : http://www.iamu-edu.org
ISBN No. 978-4-907408-38-1



	空白ページ
	
	空白ページ




